PH: Physics

Read the following instructions carefully.

1. This question paper contains 85 objective type questions. Q. 1 to Q .20 carry one m each and Q .21 to Q .85 carry two marks each.
2. Attempt all the questions.
3. Questions must be answered on Objective Response Sheet (ORS) by ake ing the appropriate bubble (marked A, B, C, D) using $H B$ pencil against ec estion number on the left hand side of the ORS. Each question has only one ane an wer. In case you wish to change an answer, erase the old answer completely.
4. Wrong answers will cany NEGATIVE marks. m Q (1, Q.20, 0.25 mark will be deducted for each wrong answer. In Q. 21 to $76,7.78, \mathrm{Q} .80, \mathrm{Q} .82$ and in $\mathrm{Q} .84,0.5$ mark will be deducted for each wrong ans However, there is no negative marking in Q.77. Q.79, Q.81, Q. 83 and in Q.85. Mo. than one answer bubbled against a question will be taken as an incorrect respon, s_{y} empted questions will not carry any marks.
5. Write your registration number, four name and name of the examination centre at the specified locations on th aris ratf of the ORS.
6. Using HB penvil, arke the appropriate bubble under each digit of your registration number and he ter corresponding to your paper code.
7. Cataula rmowed in the examination hall.
8. are graph sheets or tables are NOT allowed in the examination hall.
9. Rw..gh work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
10. This question paper contains 20 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

Some useful physical constants, symbols and formulae

Speed of light in free space
Atomic mass unit
Avogadro's number
Bohr magneton
Boltzrnann constant
Electron charge
Planck's constant
Rest mass of electron
Reduced Planck's constant ($h / 2 \pi$)
Permeability of free space
Permittivity of free space
$c=3.0 \times 10^{8} \mathrm{~ms}^{+}$
$\mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
$N_{A}=6.02 \times 10^{23}$ mole $^{-4}$
$H_{B}=9.27 \times 10^{-24} \mathrm{Am}^{2}$
$\left.k_{B}=1.38 \times 10^{23}\right) k^{4}$
$e=1.60 \times 10^{1 / 9} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~s}$
$m_{c}=9.11 \times 10^{31} \mathrm{~kg}$
青 $=1.05 \times 10^{2+1} \mathrm{~s}$
$\mu_{0}=1.26 \times 10^{6} \mathrm{NA}^{3}$
$\vec{\nabla}$ operator in spherical coordinates:

$$
\vec{\nabla}()=\hat{r} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2}\right)+\hat{\theta} \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta,)+\frac{t}{r \sin }+\theta
$$

Q. 1 - Q. 20 carry one mark ea
Q. 1 The eigenvalues of a matrix are i. 2 l and 3 . The matrivis
(A) unitary,
(C) Hermitian.
Q. 2 A space station moving in a circy or around the Earth goes into a new bound orbit by firing its engine radiall out vd. This orbit is
(A) a larger circle,
(B) a smaller circle.
(C) an ellipse.
(D) a parabola.
Q. 3 A power amplifie giva 15 W output for an input of 1.5 W . The gain, in $\mathrm{dB}, \mathrm{t}_{\mathrm{R}}$
(A) 10
(B) 20
(C) 54
(D) 100
Q. 4 Four point ges are placed in a plane at the following positions:
$+C$ at $(1,0),-Q$ at $(-1,0),+Q$ at $(0,1)$ and $-Q$ at $(0,-1)$.

- 1 ge distances the electrostatic potential due to this charge distribution will be a minated by the
(A) monopole moment.
(B) dipole moment.
(C) quadrupole moment.
(D) octopole moment.
Q. 5 A charged capacitor (C) is connected in series with an inductor (L), When the displacement current reduces to zero, the energy of the LC circuit is
(A) stored entirely in its magnetic field.
(B) stored entirely in its electric field.
(C) distributed equally among its electric and magnetic fields.
(D) radiated out of the circuit.
P. Franck-Hertz experiment
Q. Hartree-Fock method
R. Stern-Gerlach experiment
S. Franck-Condon principle
(A)
(P-4
Q-2
-R-3
- S-1

1. electronic excitation of molecules
2. wave function of atoms
3. spin angular momentum of atoms
4. energy levels in atoms
Q. 7 The wavefunction of a particle, moving in a one-dimensional ne-independent The wavefunction of a particle, moving in a one- b are constants. This leans that
potential $V(x)$, is given by $\psi(x)=e^{-\operatorname{saxth}}$, where a and b. the potential $V(x)$ is of the form
(A) $V(x) \propto x$
(B) $V(x)$
(C) $V(x)=0$
(D) $V(x) \subset e^{-a x}$
Q. $8 \quad$ The D_{1} and D_{2} lines of $\mathrm{Na}\left(3^{2} \mathrm{P}_{1 / 2} \rightarrow 3^{2} \mathrm{~S}_{1 / 2} \rightarrow \operatorname{lo}_{3} \rightarrow{ }^{2} \mathrm{~S}_{1 / 2}\right)$ will split on the application of a weak magnetic field into
(A) 4 and 6 lines respectively.
(C) 6 and 4 lines respectively.
(B) 3 lines each,
(D) 6 lines each.
(C)

P-3
Q-2
R-4
S-1
Q. 9 In a $\mathrm{He}-\mathrm{Ne}$ laser, the laser ran ion akes place in
(A) He only.
(B) Ne only.
(C) Ne first, then in H
(D) He first, then in Ne .
Q.10. The partition i ctio of a single gas molecule is Z_{α}. The partition function of N such noi interacting gas molecules is then given by
(1) $\frac{12}{N!}$
(B) $\left(Z_{\alpha}\right)^{N}$
(C) $N\left(Z_{\alpha}\right)$
(D) $\frac{\left(Z_{\alpha}\right)^{N}}{N}$

C 11 A solid superconductor is placed in an external magnetic field and then cooled below its critical temperature. The superconductor
(A) retains its magnetic flux because the surface current supports it.
(B) expels out its magnetic flux because it behaves like a paramagnetic material.
(C) expels out its magnetic flux because it behaves like an anti- ferromagnetic material.
(D) expels out its magnetic flux because the surface current induces a field in the direction opposite to the applied magnetic field.
Q. 12 A particle with energy E is in a time-independent double well potential as shown in the figure.
Which of the following statements about the particle is NOT correct?

(A) The particle will always be in a bound state.
(B) The probability of finding the particle in one well will be time-dependent.
(C) The particle will be confined to any one of the wells.
(D) The particle can tunnel from one well to the other, and back.
Q. 13 It is necessary to apply quantum statistics to a system of particles if
(A) there is substantial overlap between the wavefunctions of the part, les
(B) the mean free path of the particles is comparable to the in+-particle separation.
(C) the particles have identical mass and charge.
(D) the particles are interacting.
Q. 14 When liquid oxygen is poured down close to a strong ar mr gnet, the oxygen stream is
(A) repelled towards the lower field becal oit is magnetic.
(B) attracted towards the higher field aus it is diamagnetic.
(C) repelled towards the lower fiest ecal. it is paramagnetic.
(D) attracted towards the higher ield ecause it is paramagnetic.
Q. 15 Fission fragments are gens ally dionctive as
(A) they have excess
(B) they have excess of pons.
(C) they are pr ar of adioactive nuclides.
(D) their total ir ac nergy is of the order of 200 MeV .
Q. 16 In a typ al npn transistor the doping concentrations in emitter, base and collector regis ${ }^{\circ}$ a C_{E}, C_{B} and C_{c} respectively. These satisfy the relation,
4) $\quad C_{C}>C_{B}$
(B) $C_{E}>C_{B}>C_{C}$
(C) $C_{C}>C_{B}>C_{B}$
(D) $C_{E}=C_{C}>C_{B}$
allowed states for $\mathrm{He}\left(2 p^{2}\right)$ configuration are
(A) ${ }^{1} \mathrm{~S}_{0},{ }^{3} \mathrm{~S}_{1,}{ }^{1} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{0,1,2},{ }^{1} \mathrm{D}_{2}$ and ${ }^{5} \mathrm{D}_{1,2,3}$
(B) ${ }^{1} \mathrm{~S}_{0}{ }^{3} \mathrm{P}_{0.1,2}$ and ${ }^{1} \mathrm{D}_{2}$
(C) ${ }^{1} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{P}_{0,1,2}$
(D) ${ }^{1} S_{0}$ and ${ }^{1} P_{j}$
Q. 18 The energy levels of a particle of mass m in a potential of the form

$$
\begin{aligned}
V(x) & =\quad \infty, \quad x \leq 0 \\
& =\frac{1}{2} m\left(\omega^{2} x^{2}, \quad x>0\right.
\end{aligned}
$$

are given; in terms of quantum number $n=0,1,2,3, \ldots$, by
(A) $\left(n+\frac{1}{2}\right) n 0$
(B) $(2 n+1) \hbar_{n}$
Q. 19 The electromagnetic field due to a point charge must be described by LiénardWeichert potentials when
(A) the point charge is highly accelerated.
(B) the electric and magnetic fields are not perpendicular.
(C) the point charge is moving with velocity close to that of light.
(D) the calculation is done for the radiation zone, i.e. far away from the charge.
Q. 20 The strangeness quantum number is conserved in
(A) strong, weak and electromagnetic interactions.
(B) weak and electromagnetic interactions only.
(C) strong and weak interactions only.
(D) strong and electromagnetic interactions only.

Q. 21 to Q. 75 carry two marks each.

(A) 6,1 and $\left[\begin{array}{l}4 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$

(C) 6,1 and $\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$

A vector field is defined eve wh is $\vec{F}=\frac{y^{2}}{L} \hat{i}+z \hat{k}$. The net flux of \vec{F} associated with a cube of side L, wit one X at the origin and sides along the positive X, Y, and Z axes, is
(A) $2 L^{3}$
$(B) 4 L^{3}$
(C) $8 L^{3}$
(D) $10 L^{3}$
Q. 23

If $\bar{r}=x \hat{i}+\hat{j}$, then
$(A) \overrightarrow{\vec{r}} \vec{r}=0 \operatorname{con} d \vec{\nabla}|\vec{r}|=\vec{r}$
(B) $\vec{\nabla} \cdot \vec{r}=2$ and $\vec{\nabla}|\vec{r}|=\hat{r}$
$\cdot \vec{r}=2$ and $\vec{\nabla}|\vec{r}|=\frac{\hat{r}}{r}$,
(D) $\vec{\nabla} \cdot \vec{r}=3$ and $\bar{\nabla}|\vec{r}|=\frac{\hat{r}}{r}$

Consider a vector $\vec{p}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ in the coordinate system $(\hat{i}, \hat{j}, \hat{k})$. The axes are rotated anti-clockwise about the Y axis by an angle of 60°. The vector \vec{p} in the rotated coordinate system $\left(\hat{i}^{\prime}, \hat{j}^{\prime}, \hat{k}^{\prime}\right)$ is
(A) $(\mathbf{l}-\sqrt{3}) \hat{i}^{\hat{t}}+3 \hat{j}^{t}+(1+\sqrt{3}) \hat{k}^{\prime}$
(B) $(l+\sqrt{3}) \hat{i}^{\prime}+3 \hat{j}^{\prime}+(1-\sqrt{3}) \hat{k}^{\prime} \downarrow$
(C) $(\mathbf{i}-\sqrt{3}) \hat{i}+(3+\sqrt{3}) \hat{j}^{\prime}+2 \hat{k}^{\prime}$
(D) $(1-\sqrt{3}) \hat{i}^{\prime}+(3-\sqrt{3}) \hat{j}+2 \hat{k}$

The contour integral $\oint \frac{d z}{z^{4}+a^{4}}$ is to be evaluated on a circle of radius $2 a$ the origin. It will have contributions only from the points
(A) $\frac{1+i}{\sqrt{2}} a$ and $-\frac{1+i}{\sqrt{2}} a$
(B) ia and -ia
(C) $i a,-i a, \frac{1-i}{\sqrt{2}} a$ and $-\frac{1-i}{\sqrt{2}} a$
(D) $\frac{1+i}{\sqrt{2}} a,-\frac{1+i}{\sqrt{2}} a, \frac{1-i}{\sqrt{2}} a$ and $-\frac{1-i}{\sqrt{2}} a$
Q. 26

Inverse Laplace transform of $\frac{s+1}{s^{2}-4}$ is
(A) $\cos 2 x+\frac{1}{2} \sin 2 x$
(B) $\cos x+\frac{1}{2} \sin x$
(C) $\cosh x+\frac{1}{2} \sinh x$
(D) $\cosh 2 x+\frac{1}{2} \sinh$
Q. 27 The points, where the series solution of the Legendre if ere tial equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\frac{3}{2}\left(\frac{3}{2}+1\right) y=0$ will diverge, are located at
(A) 0 and 1
(B) 0 and
(C) - 1 and 1
(D) $\frac{3}{2}$ and $\frac{5}{2}$
Q. 28 Solution of the differentiol eq ation $x \frac{d y}{d x}+y=x^{4}$, with the boundary condition that $y=1$, at $x=1$, is
(A) $y=5 x^{4}$
(B) $y=\frac{x^{4}}{5}+\frac{4 x}{5}$
(C) $y=\frac{4 x^{4}}{5}+\frac{1}{5 x}$
(D) $y=\frac{x^{4}}{5}+\frac{4}{5 x}$
Q. 29 Mat h the forowing
P. mass

1. timelike vector
R. Your-momentum
S. electromagnetic field
2. Lorentz invariant
3. tensor of rank 2
4. conserved and Lorentz invariant

(A)	(B)	(C)	(D)
P-2	P-4	P-2	P-4
Q-4	Q-2	Q-4	Q-2
R-3	R-1	R-1	R-3
S-1	S-3	S-3	S-1

Q. 30 The moment of inertia of a uniform sphere of radius r about an axis passing through its centre is given by $\frac{2}{5}\left(\frac{4 \pi}{3} r^{5} \hat{\rho}\right)$.
A rigid sphere of uniform mass density ρ and radius R has two smaller spheres of radius $R / 2$ hollowed out of it, as shown in the figure. The moment of inertia of the resulting body about the Y axis is

(A) $\frac{\pi \rho R^{5}}{4}$
(B) $\frac{5 \pi \rho R^{3}}{12}$
(C) $\frac{7 \pi \rho R^{5}}{12}$
Q. 31 The Lagrangian of a particle of mass m is $L=\frac{m}{2}\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}\right]-\frac{V}{2}\left(x^{2}+y^{2}\right)+W \sin \omega t$ ver V, W and ω are constants. The conserved quantities are
(A) energy and z-component of linear mem ant m My.
(B) energy and z-component of angular ome a only.
(C) z-components of both linear and gun momenta only.
(D) energy and z-components of th lin ar and angular momenta.
Q. 32 Three particles of mass m enh si ated at $x_{1}(t), x_{2}(t)$ and $x_{3}(t)$ respectively are connected by two springe of plig constant k and un-stretched length ℓ. The system is free to oscillate only in of d/mension along the straight line joining all the three particles. The Lagrun of the system is
(A) $L=\frac{m}{2}\left[\left(\frac{1}{d t}\left(\frac{d x_{2}}{d t}\right)^{2}+\left(\frac{d x_{3}}{d t}\right)^{2}\right]-\frac{k}{2}\left(x_{1}-x_{2}-\ell\right)^{2}+\frac{k}{2}\left(x_{3}-x_{2}-\ell\right)^{2}\right.$
(8) $L=\frac{1}{2}\left[\left(\frac{d x_{1}}{d t}\right)^{2}+\left(\frac{d x_{2}}{d t}\right)^{2}+\left(\frac{d x_{3}}{d t}\right)^{2}\right]-\frac{k}{2}\left(x_{1}-x_{3}-\ell\right)^{2}+\frac{k}{2}\left(x_{3}-x_{2}-\ell\right)^{2}$
C) $L=\frac{m}{2}\left[\left(\frac{d x_{1}}{d t}\right)^{2}+\left(\frac{d x_{2}}{d t}\right)^{2}+\left(\frac{d x_{3}}{d t}\right)^{2}\right]-\frac{k}{2}\left(x_{1}-x_{2}+\ell\right)^{2}-\frac{k}{2}\left(x_{3}-x_{2}+\ell\right)^{2}$
(D) $L=\frac{m}{2}\left[\left(\frac{d x_{1}}{d t}\right)^{2}+\left(\frac{d x_{2}}{d t}\right)^{2}+\left(\frac{d x_{3}}{d t}\right)^{2}\right]-\frac{k}{2}\left(x_{1}-x_{2}-\ell\right)^{2}-\frac{k}{2}\left(x_{3}-x_{2}-\ell\right)^{2}$
Q. 33 The Hamittonian of a particle is $H=\frac{p^{2}}{2 m}+p q$. where g is the generalized and p is the corresponding canonical momentum. The Lagrangian is
(A) $\frac{m}{2}\left(\frac{d q}{d t}+q\right)^{2}$
(B) $\frac{m}{2}\left(\frac{d q}{d t}-q\right)^{2}$
(C) $\frac{m}{2}\left[\left(\frac{d q}{d t}\right)^{2}+q \frac{d q}{d t}-q^{2}\right]$
(D) $\frac{m}{2}\left[\left(\frac{d q}{d t}\right)^{2}-q \frac{d q}{d t}+q^{2}\right]$
Q. 34 A toroidal coil has N closely-wound turns. Assume the current through the coil be P and the toroid is filled with a magnetic material of relative permitti- ty A, he magnitude of magnetic induction \bar{B} inside the toroid, at a radial dizanco -5 m the axis, is given by
(A) $\mu_{r} \mu_{0} N / r$
(B) $\frac{\mu_{r} \mu_{0} N I}{r}$
(C) $\frac{\mu_{r} \mu_{0} N I}{2 \pi r}$
$\square(\mathrm{D}$
(D) $2 \pi \mu_{r} \mu_{0} N / r$
Q. 35 An electromagnetic wave with $\vec{E}(z, t)=E_{0} \cos (a) k 2$ is traveling in free space and crosses a disc of radius 2 m placed perpend $\mathrm{u}^{\prime} \mathrm{H}$ the z -axis. If $E_{0}=60 \mathrm{Vm}^{-1}$. the average power, in Watt, crossing the of alon, ne z-direction is
(A) 30
(B) 60
120
(D) 270
Q. 36 Can the following scalar and vo-tor tentials describe an electromagnetic field? $\phi(\bar{x}, i)=3 x y z-4 t$ $\left.\bar{A}(\vec{x}, t)=(2 x-\omega t) \hat{i}+(y-t z) \hat{j} \quad-2 x e^{i z x}\right) \hat{k}$
where ω is a constant.
(A) Yes, in the C.om gauge.
(B) Yes, in the Lorentz gauge.
(C) Yes, provided $w=0$.
(D) No.
Q. 37 For a par con mass m in a one-dimensional harmonic oscillator potential of the form $V(x) \frac{1}{2} m \omega^{2} x^{2}$, the first excited energy eigenstate is $\psi(x)=x e^{-\Delta x^{2}}$. The value of 15
(A) $m \omega / 4 \hbar$
(B) $m a / 3 n$
(C) $m \omega / 2 h$
(D) $2 m \omega / 3 \hbar$
Q. If If $[x, p]=i h$, the value of $\left[x^{3}, p\right]$ is
(A) $2 i \hbar x^{2}$
(B) $-2 i \hbar x^{2}$
(C) $3 i \hbar x^{2}$
(D) $-3 i \hbar x^{2}$
Q. 39 There are only three bound states for a particle of mass m in a one-dimensional potential well of the form shown in the figure. The depth V_{0} of the potential satisfies

(A) $\frac{2 \pi^{2} \hbar^{2}}{m a^{2}}<V_{0}<\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$
(B) $\frac{\pi^{2} \hbar^{2}}{m a^{2}}<V_{0}<\frac{2 \pi^{2} \hbar^{2}}{m a^{2}}$
(C) $\frac{2 \pi^{2} \hbar^{2}}{m a^{2}}<V_{0}<\frac{8 \pi^{2} \hbar^{2}}{m a^{2}}$
(D) $\frac{2 \pi^{2} \hbar^{2}}{m a^{2}}<V_{0}<\frac{50 \pi^{2} \hbar^{2}}{m a^{2}}$
Q. 40 An atomic state of hydrogen is represented by the following wave.ction:
$\psi(r, \theta, \varphi)=\frac{1}{\sqrt{2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}} \cos \theta$.
where a_{0} is a constant. The quantum numbers of the st te are
(A) $\ell=0, m=0, n=1$
(C) $\ell=1, m=0, n=2$
(s) $=1, m=1, n=2$
D) $\ell=2, m=0, n=3$
Q. 41 Three operators X, Y and $Z S$ isfy e commutation relations $[X, Y]=i \hbar Z,[Y, Z]=i^{\dagger}, \quad$ anc $\left.Z, X\right]=i \hbar Y$.
The set of all possible ig av wes of the operator Z, in units of \hbar, is
(A) $\{0, \pm 1$
(B) $\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots\right\}$
(C) $\left\{0, \pm \frac{1}{2},- \pm \frac{3}{2}, \pm 2, \pm \frac{5}{2}, \ldots\right\}$
(D) $\left\{-\frac{1}{2},+\frac{1}{2}\right\}$
Q.4 Theat pump working on the Carnot cycle maintains the inside temperature of a house $22^{\circ} \mathrm{C}$ by supplying $450 \mathrm{~kJ} \mathrm{~s}^{-1}$. If the outside temperature is $0^{\circ} \mathrm{C}$, the heat taken, in $\mathrm{kJ} \mathrm{s}^{-1}$, from the outside air is approximately
(A) 487
(B) 470
(C) 467
(D) 417
Q. 43 The vapour pressure p (in mm of Hg) of a solid, at temperature T, is expressed by $\ln p=23-3863 / T$ and that of its liquid phase by $\ln p=19-3063 / T$. The triple point (in Kelvin) of the material is
(R) 190
(C) 195
(D) 200
Q. 44

The free energy for a photon gas is given by $F=-\left(\frac{a}{3}\right) V T^{4}$, where a is a constar
The entropy S and the pressure P of the photon gas are
(A) $S=\frac{4}{3} a V T^{3}, \quad P=\frac{a}{3} T^{4}$
(B) $S=\frac{1}{3} a V T^{4}, \quad P=\frac{4 a}{3} T^{3}$
(C) $S=\frac{4}{3} a V T^{4}, \quad P=\frac{a}{3} T^{3}$
(D) $S=\frac{1}{3} a V T^{3}, \quad P=\frac{4 a}{3} T^{4}$
Q. 45 A system has energy levels $E_{0}, 2 E_{0}, 3 E_{0}, \ldots$, where the excited stat on in oly degenerate. Four non-interacting bosons are placed in this system. If th total of these bosons is $5 E_{0}$, the number of microstates is
(A) 2
(B) 3
(C) 4

Q. 46 In accordance with the selection rules for electric dipole t, dio s , the $4^{3} \mathrm{P}_{1}$ state of helium can decay by photon emission to the states
(A) $2^{1} \mathrm{~S}_{0}, 2^{1} \mathrm{P}_{1}$ and $3^{1} \mathrm{D}_{2}$
(C) $3^{3} \mathrm{P}_{2}, 3^{3} \mathrm{D}_{3}$ and $3^{3} \mathrm{P}_{0}$
($\mathrm{B}^{\prime} \mathrm{C}^{1}{ }^{1}, 1_{0}$ and $3^{1} \mathrm{~S}_{0}$

If an atom is in the ${ }^{3} \mathrm{D}_{3}$ state, the angle hetw en its orbital and spin angular momentum vectors (\vec{L} and \vec{S}) is
(A) $\cos ^{-1} \frac{1}{\sqrt{3}}$
(B)
(C) $\cos ^{-1} \frac{1}{2}$
(D) $\cos ^{-1} \frac{\sqrt{3}}{2}$
Q. 48 The hyperfine structur $\mathrm{NaTg}^{2}\left(3^{2} \mathrm{P}_{3 n}\right)$ with nuclear spin $I=3 / 2$ has
(A) I state.
(B) 2 states.
(C) 3 states.
(D) 4 states.
Q. 49 The allo ed retational energy levels of a rigid hetero-nuclear diatomic molecule are expre $s \varepsilon_{J}=B J(J+1)$, where B is the rotational constant and J is a rotational Hain number.
In a system of such diatomic molecules of reduced mass μ, some of the atoms of one erment are replaced by a heavier isotope, such that the reduced mass is changed to $.05 \mu$. In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition $J=4 \rightarrow J=5$, is
(A) $0.475 B$
(B) 0.50 B
(C) 0.95 B
(D) $1.0 B$
Q. 50 The number of fundamental vibrational modes of CO_{2}. molecule is
(A) four: 2 are Raman active and 2 are infrared active.
(B) four: I is Raman active and 3 are infrared active.
if three: 1 is Raman active and 2 are infrared active.
Q. 51 A piece of paraffin is placed in a uniform magnetic field H_{0}. The sa hydrogen nuclei of mass $m_{p \text {. }}$ which interact only with external magnetio additional oscillating magnetic field is applied to observe resonance absorptr is the g-factor of the hydrogen nucleus, the frequency, at which resonance abson takes place, is given by
(A) $\frac{3 g_{j} e H_{0}}{2 \pi m_{p}}$
(B) $\frac{3 g_{i} e H_{0}}{4 \pi m_{p}}$
(C) $\frac{g_{1} e H_{0}}{2 \pi m_{p}}$
(D) $\frac{g_{1} e H_{0}}{4 \pi m_{p}}$
Q. 52 The solid phase of an element follows van der Waals bonding with inter-a mic potential $V(r)=-\frac{P}{r^{6}}+\frac{Q}{r^{12}}$, where P and Q are constants. The bond lengt carn be expressed as
(A) $\left(\frac{2 Q}{P}\right)^{-6}$
(B) $\left(\frac{Q}{P}\right)^{-6}$
(C) $\left(\frac{P}{2 Q}\right)$
(D) $\left(\frac{P}{Q}\right)^{-6}$
Q. 53 Consider the atomic packing factor (APF) of the Now ing crystal structures:
P. Simple Cubic
Q. Body Centred Cubic
R. Face Centred Cubic
S. Diamond
T. Hexagonal Clos Pa ked

Which two of the above structu es have equal APF?
(A) P and Q
(B) ${ }^{\text {an }}$ a
(C) R and S
(D) R and T
Q. 54 In a powder diffractio patern recorded from a face-centred cubic sample using x rays, the first eea appuars at 30°. The second peak will appear at
(A) 32.8
(B) 33.7^{0}
(C) 34.8^{0}
(D) 35.3^{0}
Q. 55 Vaiath no electrical resistivity ρ with te peraxure T of three solids is sketched (on din rent scales) in the figure, as curves P, Q d R.

Which one of the following statements describes the variations most appropriately?

Q. 56 An extrinsic semiconductor sample of cross-section A and length L is doped way that the doping concentration varies as $N_{D}(x)=N_{0} \exp \left(-\frac{x}{L}\right)$, where N_{0} is constant. Assume that the mobility μ of the majority carriers remains constant. The resistance R of the sample is given by
(A) $R=\frac{L}{A \mu e N_{0}}[\exp (1.0)-1]$
(B) $R=\frac{L}{\mu e N_{0}}[\exp (1.0)-1]$
(C) $R=\frac{L}{A \mu L N_{0}}[\exp (-1,0)-1]$
(D) $R=\frac{L}{A \mu U N_{0}}$
Q. 57 A ferromagnetic mixture of iron and copper having 75% atoms of Fe ext bits a saturation magnetization of $1.3 \times 10^{6} \mathrm{~A} \mathrm{~m}^{-1}$. Assume that the total amber of oms per unit volume is $8 \times 10^{28} \mathrm{~m}^{-3}$. The magnetic moment of an iron atc n, in rms of the Bohr Magneton, is
(A) 1.7
(B) 2.3
(C) 2.9
(D) 3.8
$\ln 20.643 .28$
$T_{1 / 2}=\frac{0.693}{7}$
$t=\frac{1}{\lambda} \ln \left(\frac{N}{N}\right)$
$=\frac{242}{2 n}-\operatorname{lig}^{2} \mathrm{C} .59$
(A) 128×10^{3}
(B) 256×10^{3}
C) $1+2 \times 10^{3}$
(D) 1024×10^{3}

In the deuterium + tritium $(d+t)$ for mon energy is released as compared to deuterium + deuterium $(d+d)$ fils on be fuse
(A) tritium is radioactive.
(B) more nucleons partic pate $n f$ sion.
(C) the Coulomb bartive laver for the $d+i$ system than $d+d$ system.
(D) the reaction $y=\mathrm{ct}^{4}$ Te is more tightly bound.
Q. 60 According to the s. all the ground state spin of the ${ }^{17} \mathrm{O}$ nucleus is
(A) $\frac{3}{0}^{+}$
(B) $\frac{5}{2}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}^{-}$
Q.61 A renavistic particle travels a length of $3 \times 10^{-3} \mathrm{~m}$ in air before decaying. The decay process of the particle is dominated by
(A) strong interactions.
(B) electromagnetic interactions.
(C) weak interactions.
(D) gravitational interactions.
Q. 62 The strange baryon Σ^{+}has the quark structure
(A) $u d s$
(B) $u u d$
(C) $u u s$
(D) $u \bar{s}$
Q. 63 A neutron scatters elastically from a heavy nucleus. The initial and final st neutron have the
(A) same energy.
(B) same energy and linear momentum.
(C) same energy and angular momentum.
(D) same linear and angular momenta.
Q. 64 The circuit shown is based on ideal operational amplifiers. It acts as a
(A) subtractor.
(B) buffer amplifier
(C) adder.
(D) divider.
Q. 65 Identify the function F generated by the logic network shown

(A) $F=(X+Y) Z$
(B) $\mathrm{F}=\mathrm{Z}+\mathrm{Y}+\bar{Y} \mathrm{X}$
(C) $\mathrm{F}=\mathrm{ZY}(\mathrm{Y}+\mathrm{X})$
(D) $\mathrm{F}=\mathrm{XYZ}$
Q. 66 In the circuit shown, the and Q_{2} are in the state $\mathrm{Q}_{1}=1, \mathrm{Q}_{2}=0$. The orcui is ow subjected to two con ata clock pulses. The catc fit ese ports now becom ?

$\mathrm{Q}_{1}=0$
(B) $\mathrm{Q}_{2}=0, \mathrm{Q}_{1}=1$
(C) $\mathrm{Q}_{2}=1, \mathrm{Q}_{1}=1$
(D) $\mathrm{Q}_{2}=0, \mathrm{Q}_{1}=0$
Q. 6 he registers $\mathrm{QD}_{\mathrm{D}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{B}$ and Q_{A} shown in the figure an initially in the state 1010 respectively. An input sequence $\mathrm{SI}=0101$ is applied. After two clock pulses, the state of the shift registers (in the same sequence $\left.\mathrm{QD}_{\mathrm{D}} \mathrm{Q}_{C} \mathrm{Q}_{B} \mathrm{Q}_{\mathrm{A}}\right)$ is
(A) 1001
(B) 0100
(C) 0110
(D) 1010
Q. 68 For the circuit shown, the potential difference (in Volts) across R_{L} is
(A) 48
(B) 52
(C) 56
(D) 65
Q. 69 In the circuit shown, the voltage at test point P is 12 V and the voltage between gate and source is -2 V . The value of $R(\operatorname{in} \mathrm{k} \Omega)$ is
(A) 42
(B) 48
(C) 56
(D) 70

Q. 70 When an input voltage V_{1}, of the form shown, is applied to the circuit given below, the output voltage V_{0} is of the form
(A)

(B)

(C)

(D)

Common Data Questions

Common Data for Questions 71,72,73:

A particle of mass m is confined in the ground state of a one-dimensional box, extending from $x=-2 L$ to $x=+2 L$. The wavefunction of the particle in this state is $\psi(x)=\psi_{0} \cos \frac{\pi x}{4}$ where ψ_{0} is a constant.
Q. 71 The normalization factor ψ_{0} of this wavefunction is
(A) $\sqrt{\frac{2}{L}}$
(B) $\sqrt{\frac{1}{4 L}}$
(C) $\sqrt{\frac{1}{2 L}}$
(0) $\sqrt{\frac{1}{L}}$
Q. 72 The energy eigenvalue corresponding to this state
(A) $\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$
(B) $\frac{\hbar^{2} \pi^{2}}{4 m L^{2}}$
C) $\frac{1 \%}{1 \frac{2}{m L^{2}}}$
(D) $\frac{\hbar^{2} \pi^{2}}{32 m L^{2}}$
Q. 73 The expectation value of p^{2} (p is the mextum operator) in this state is
(A) 0
(B) $\frac{\hbar^{2}}{32 T}$
(C) $\frac{\hbar^{2} \pi^{2}}{16 L^{2}}$
(D) $\frac{\hbar^{2} \pi^{2}}{8 L^{2}}$

Common Data for Questions 74 75:

The Fresnel relations bet eer the amplitudes of incident and reflected electromagnetic waves at an interface between air ad dielectric of refractive index μ, are

and $E_{1}^{\text {refferend }}=\frac{\mu \cos r-\cos i}{\mu \cos r+\cos i} E_{1}^{\text {mesteme }}$.
The subscripts "an L refer to polarization, parallel and normal to the plane of incidence respectively Ne, i and r are the angles of incidence and refraction respectively.
Q. 74 The condition for the reflected ray to be completely polarized is
(A) $\mu \cos i=\cos r$
(B) $\cos i=\mu \cos r$
(C) $\mu \cos i=-\cos r$
(D) $\cos i=-\mu \cos r$
Q. 75 For normal incidence at an air-glass interface with $\mu=1.5$ the fraction of energy reflected is given by

Statement for Linked Answer Questions 76 \& 77:
In the laboratory frame, a particle P of rest mass m_{0} is moving in the positive x dired a speed of $\frac{5 c}{19}$. It approaches an identical particle Q, moving in the negative x direction speed of $\frac{2 c}{5}$.
Q. 76 The speed of the particle P in the rest frame of the particle Q is
(A) $\frac{7 c}{95}$
(B) $\frac{13 c}{85}$
(C) $\frac{3 c}{5}$
(D)
Q. 77 The energy of the particle P in the rest frame of the particle Q is
(A) $\frac{1}{2} m_{0} c^{2}$
(B) $\frac{5}{4} m_{0} c^{2}$
(C) $\frac{19}{13} m n^{2}$
(D) $\frac{11}{9} m_{0} c^{2}$

Statement for Linked Answer Questions 78 \& 79

The atomic density of a solid is $5.85 \times 10^{28} \mathrm{~m}^{-3}$. Its ectr al esistivity is $1.6 \times 10^{-8} \Omega \mathrm{~m}$. Assume that electrical conduction is described by th Drue model (classical theory), and that each atom contributes one conduction electro-
Q. 78 The drift mobility (in $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$) o the conduction electrons is
(A) 6.67×10^{-3}
(B) $6.66 \times 1{ }^{\circ}$
(C) 7.63×10^{-3}
(D) 7.63×10^{-0}
Q. 79 The relaxation timen free time), in seconds, of the conduction electrons is
(A) 3.98×10^{-15}
B) 3.79×10^{-14}
(C) 2.84×10^{-12}
(D) 2.64×10^{-11}

Statement for L me Answer Questions 80 \& 81:

A sphere of rom $?$ carries a polarization $\vec{P}=k \vec{r}$, where k is a constant and \vec{r} is measured from the $n t$ of the sphere.

Tho bound surface and volume charge densities are given, respectively, by
(A) $-k|\vec{r}|$ and $3 k$
(B)) $k|\vec{r}|$ and $-3 k$
(C) $k|\vec{r}|$ and $-4 \pi k R$
(D) $-k|\bar{r}|$ and $4 \pi k R$
Q.81 The electric field \vec{E} at a point \vec{r} outside the sphere is given by
(A) $\vec{E}=0$
(B) $\bar{E}=\frac{k R\left(R^{2}-r^{2}\right)}{\varepsilon_{0} r^{3}} \hat{r}$

Statement for Linked Answer Questions 82 \& 83:

An ensemble of quantum harmonic oscillators is kept at a finite temperature $T=1$
Q. 82

The partition function of a single oscillator with energy levels $\left(n+\frac{1}{2}\right) \hbar \omega$ is gives
(A) $Z=\frac{e^{-\beta \lambda a / 2}}{1-e^{-\beta \lambda \alpha}}$
(B) $Z=\frac{e^{-\beta h D^{\prime} / 2}}{1+e^{-\beta h \omega}}$
(C) $Z=\frac{1}{1-e^{-\beta \hbar \omega}}$
(D) $Z=\frac{1}{1+e^{-\beta n \omega}}$
Q. 83 The average number of energy quanta of the oscillators is given by
(A) $<n>=\frac{1}{e^{\beta h \alpha x}-1}$
(C) $<n>=\frac{1}{e^{\rho A \omega}+1}$
(B)

(D)

Statement for Linked Answer Questions 84 \& 8

A $16 \mu \mathrm{~A}$ beam of alpha particles, having cross-ctic al area $10^{-4} \mathrm{~m}^{2}$, is incident on a rhodium target of thickness $1 \mu \mathrm{~m}$. This produces eutrons through the reaction $\alpha+{ }^{100} R h \rightarrow{ }^{101} P d+3 n$.
Q. 84 The number of alpha parti hing the target per second is
(A) 0.5×10^{14}
(B) 1×10^{4}
(C) 2.0×10^{20}
(D) 4.0×10^{20}
Q. 85 The neutrons are obser co the rate of $1.806 \times 10^{8} \mathrm{~s}^{-1}$. If the density of thodium is approximated $\sigma^{1} \mathrm{~kg} \mathrm{~m}^{-3}$ the cross-section for the reaction (in barns) is
(A) 0.1
(B) 0.2
(C) 0.4
(D) 0.8

END OF THE QUESTION PAPER

Space for Rough Work

