PH : Physics

Duration : Three Hours

Read the following instructions carefully.

1. This question paper contains all objective questions. Q. 1 to Q .20 carry onf and e^{h} and Q. 21 to Q. 85 carry two marks each.
2. Answer all the questions.

3. Questions must be answered on Objective Response She (C RS) by darkening the appropriate bubble (marked A, B, C, D) using HB per ${ }^{\circ} \mathrm{a}_{\mathrm{a}}$ anst he question number on the left hand side of the ORS. Each question is on one correct answer. In case you wish to change an answer, erase the o d a vercompletely.
4. Wrong answers will carry NEGATIVE arks. Q. 1 to Q.20, $\mathbf{0 . 2 5}$ mark will be deducted for each wrong answer. In $2.2 \mathrm{H}^{+} \mathrm{C} 76, \mathrm{Q} .78, \mathrm{Q} .80, \mathrm{Q} .82$ and in Q. $84 \mathbf{0 . 5}$ mark will be deducted for ead wi ng answer. However, there is no negative marking in Q.77, Q.79, Q Q. ${ }^{\circ}$ and in Q.85. More than one answer bubbled against a question will be ak ra mincorrect response.
5. Write your registration unver, your name and name of the examination centre at the specified locat ons on th right half of the ORS.
6. Using H's pencil, darken the appropriate bubble under each digit of your registration num the letters corresponding to your paper code.
7. © alcurawr is allowed in the examination hall.

Charts, graph sheets or tables are NOT allowed in the examination hall.
9. Rough work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
10. This question paper contains 24 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

Some useful physical constants and symbols

Speed of light in free space
Atomic mass unit
Avagadro's number
Boltzmann constant
Planck's constant
Reduced Planck's constant ($h / 2 \pi$)
Permeability of free space
Permittivity of free space
Universal gas constant
$c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
$N_{A}=6.02 \times 10^{23} \mathrm{~mole}^{-1}$
$k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Q. 1 - Q. 20 carry one mark each.

Q. 1 The trace of a 3×3 matrix is 2 . Two of its eigenvalues are The third eigenvalue is
(A) -1
(B) 0
(C)
(D) 2
Q. 2 The value of $\oint_{C} \vec{A} \cdot d \vec{\ell}$ along a square loon firm a uniform field \vec{A} is
(A) 0
(B) $2 L A$
(C) $4 L A$
(D) $L^{2} A$
Q. 3 A particle of charge q, mass an linear momentum \vec{p} enters an electromagnetic field of vector potential \vec{A} and sc ar ptential ϕ. The Hamiltonian of the particle is
(A) $\frac{p^{2}}{2 m}+q \phi \frac{A}{2}$
(B) $\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2}+q \phi$
(C) $\frac{1}{2}\left(\vec{p}-\frac{-)^{2}}{c}\right)+\vec{p} \cdot \vec{A}$
(D) $\frac{p^{2}}{2 m} q \phi-\vec{p} \cdot \vec{A}$
Q. 4 par icless moving in an inverse square force field. If the total energy of the particle pos. ve, the trajectory of the particle is
(A) circular
(B) elliptical
(C) parabolic
(D) hyperbolic

In an electromagnetic field, which one of the following remains invariant under Lorentz transformation?
(A) $\vec{E} \times \vec{B}$
(B) $E^{2}-c^{2} B^{2}$
(C) B^{2}
(D) E^{2}
Q. 6 A sphere of radius R has uniform volume charge density. The electric potentia point $r(r<R)$ is
(A) due to the charge inside a sphere of radius r only
(B) due to the entire charge of the sphere
(C) due to the charge in the spherical shell of inner and outer radii r and R, only
(D) independent of r
Q. 7 A free particle is moving in $+x$ direction with a linear momentum p. wavefunction of the particle normalised in a length L is
(A) $\frac{1}{\sqrt{L}} \sin \frac{p}{\hbar} x$
(B) $\frac{1}{\sqrt{L}} \cos \frac{p}{\hbar} x$
(C) $\frac{1}{\sqrt{L}} e^{-i \frac{p}{\hbar} x}$
Q. 8 Which one of the following relations is true for Pauli matrices σ_{x}, σ_{y} anu σ_{z} ?
(A) $\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$
(B) $\sigma_{x} \sigma_{y}=\sigma_{z}$
(C) $\sigma_{x} \sigma_{y}=i 0 \square$
D) $\sigma_{x} \sigma_{y}=-\sigma_{y} \sigma_{x}$
Q. 9 The free energy of a photon gas enclosed in to miven by $F=-\frac{1}{3} a V T^{4}$, where a is a constant and T is the tempera are c th gas. The chemical potential of
the photon gas is
(A) 0
(B) $\frac{4}{3} a \mathrm{~V}$
(C) $\frac{1}{3} a T^{4}$
(D) $a V T^{4}$
Q. 10 The wavefunctions of two de (ic particles in states n and s are given by $\phi_{n}\left(r_{1}\right)$ and $\phi_{s}\left(r_{2}\right)$, respectively. Th par es obey Maxwell-Boltzmann statistics. The state of the combined two-nartic system is expressed as
(A) $\phi_{n}\left(r_{1}\right)+\phi_{s}$
(B) $\frac{1}{\sqrt{2}}\left[\phi_{n}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)+\phi_{n}\left(r_{2}\right) \phi_{s}\left(r_{1}\right)\right]$
(C) $\left.\sqrt{ } r^{r}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)-\phi_{n}\left(r_{2}\right) \phi_{s}\left(r_{1}\right)\right]$
(D) $\phi_{n}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)$
Q. 1 Th target of an X-ray tube is subjected to an excitation voltage V. The wavelength of the umitted X -rays is proportional to
(A) $1 / \sqrt{V}$
(B) \sqrt{V}
(C) $1 / V$
(D) V
Q. 12 The principal series of spectral lines of lithium is obtained by transitions between
(A) $\mathrm{n} S$ and $2 P, \mathrm{n}>2$
(B) $\mathrm{n} D$ and $2 P, \mathrm{n}>2$
(C) $\mathrm{n} P$ and $2 S, \mathrm{n}>2$
(D) $\mathrm{n} F$ and $3 D, \mathrm{n}>3$
Q. 13 Which one of the following is NOT a correct statement about semiconductors
(A) The electrons and holes have different mobilities in a semiconductor
(B) In an n-type semiconductor, the Fermi level lies closer to the conduction band edge
(C) Silicon is a direct band gap semiconductor
(D) Silicon has diamond structure
Q. 14 Which one of the following axes of rotational symmetry is NOT permissible in sir gle crystals?
(A) two-fold axis
(B) three-fold axis
(C) four-fold axis
(D) five-fold axis
Q. 15 Weak nuclear forces act on

(A) both hadrons and leptons
(C) all particles
(B) hadrons
(D) all char ed par icles
Q. 16 Which one of the following disintegration series of he he lements will give ${ }^{209} \mathrm{Bi}$ as a stable nucleus?
(A) Thorium series
(C) Uranium series
(B) N ptunium series
(D) Actinium series
Q. 17 The order of magnitude of the bi g enc, gy per nucleon in a nucleus is
(A) $10^{-5} \mathrm{MeV}$
(B) ${ }^{-3} M V$
(C) 0.1 MeV
(D) 10 MeV
Q. 18 The interaction pote, ial (etveen two quarks, separated by a distance r inside a nucleon, can be dem ed by (a, b and β are positive constants)
(A) $a e^{-\beta r} \square$
(B) $\frac{a}{r}+b r$
(C) $-\frac{a}{r}+b r$
(D) $\frac{a}{r}$
Q. 19 The ${ }^{\circ}{ }^{\text {igh }}$ inputimpedance of field effect transistor (FET) amplifier is due to
(A) t e pinch-off voltage
(B) its very low gate current
(F) the source and drain being far apart
(D) the geometry of the FET
Q. 20 The circuit shown in the figure functions as

(A) an OR gate
(B) an AND gate
(C) a NOR gate
(D)

Q. 21 to Q. 75 carry two marks each.

Q. 21 A linear transformation T, defined as $T\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}+x_{2}}{x-x_{3}}$ tra sforms a vector \vec{x} from a three-dimensional real space to arnal space. The transformation matrix T is
(A) $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$
(B) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1\end{array}\right)(C)\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right)$
(D) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
Q. 22 The value of $\oint_{\mathrm{S}} \frac{\vec{r} \cdot d \vec{S}}{r^{3}}$, w ere is the position vector and s is a closed surface enclosing the origin, i
(A) 0
(C) 4π
(D) 8π

Q. 23 The valu of $\oint_{C} \frac{c}{(z+1)^{4}} d z$, where c is a circle defined by $|z|=3$, is
$\frac{0 .}{3} e^{-2}$
(B) $\frac{8 \pi i}{3} e^{-1}$
(C) $\frac{8 \pi i}{3} e$
(D) $\frac{8 \pi i}{3} e^{2}$
7. 24 The $\mathrm{k}^{\text {th }}$ Fourier component of $f(x)=\delta(x)$ is
(A) 1
(B) 0
(C) $(2 \pi)^{-1 / 2}$
(D) $(2 \pi)^{-3 / 2}$
Q. 25 An atom with net magnetic moment $\vec{\mu}$ and net angular momentum $\vec{L}(\vec{\mu}=$ kept in a uniform magnetic induction $\vec{B}=B_{0} \hat{k}$. The magnetic moment $\vec{\mu}$ precess about the z-axis. The equation of motion of the x-component of $\vec{\mu}\left(=\mu_{x}\right)$ is
(A) $\frac{d^{2} \mu_{x}}{d t^{2}}+\gamma B_{0} \mu_{x}=0$
(B) $\frac{d^{2} \mu_{x}}{d t^{2}}+\gamma B_{0} \frac{d \mu_{x}}{d t}+\mu_{x}=0$
(C) $\frac{d^{2} \mu_{x}}{d t^{2}}+\gamma^{2} B_{0}^{2} \mu_{x}=0$
(D) $\frac{d^{2} \mu_{x}}{d t^{2}}+2 \gamma B_{0} \mu_{x}=0$
Q. 26 A particle is moving in a spherically symmetric potential $V(r)=\alpha r^{2}$, nere is a positive constant. In a stationary state, the expectation value of the kinetic nerg, $<T>$ of the particle is
(A) $\langle T\rangle=\langle V\rangle$
(B) $\langle T\rangle=2\langle V\rangle$
(C) $\langle T\rangle=3\langle V\rangle$
(D) $-r>=4\langle V\rangle$
Q. 27 A particle of mass 2 kg is moving such that at time t, its pc it $\mathrm{n}, 1$ metre, is given by $\vec{r}(t)=5 \hat{i}-2 t^{2} \hat{j}$. The angular momentum of the part cle at \qquad about the origin, in $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$, is
(A) $-40 \hat{k}$
(B) $-80 \hat{k}$
(C) 80
(D) $40 \hat{k}$
Q. 28 A system of four particles is in $x-y$ atr O hese, two particles each of mass m are located at $(-1,1)$ and $(1,-1)$. The aining wo particles each of mass $2 m$ are located at $(1,1)$ and $(-1,-1)$. The $x y$-c npont of the moment of inertia tensor of this system of particles is
(A) 10 m

(C) $2 m$
(D) $-2 m$
Q. 29 For the given tr orma ions (i) $Q=p, P=-q$ and (ii) $Q=p, P=q$, where p and q are canonicall. $\mathrm{cc}_{\mathrm{s}} \mathrm{su}$ ate variables, which one of the following statements is true?
(A) Bo
(i) and (ii) are canonical
(B) Only (i) is canonical
(C) Oly
ii) is canonical
(D) Neither (i) nor (ii) is canonical
Q. 20 T e mass m of a moving particle is $\frac{2 m_{0}}{\sqrt{3}}$, where m_{0} is its rest mass. The linear momentum of the particle is
(A) $2 m_{0} c$
(B) $\frac{2 m_{0} c}{\sqrt{3}}$
(C) $m_{0} c$
(a) $\frac{m_{0} c}{\sqrt{3}}$
Q. 31 Three point charges q, q and $-2 q$ are located at $(0,-a, a),(0, a, a)$ and $(0,0,-a)$, respectively. The net dipole moment of this charge distribution is
(A) $4 q a \hat{k}$
(B) $2 q a \hat{k}$
(C) $-4 q a \hat{i}$
(D) $-2 q a \hat{j}$
Q. 32 A long cylindrical conductor kept along z-axis carries a current density $\vec{J}=J_{0}$
where J_{0} is a constant and r is the radial distance from the axis of the cylinder. The magnetic induction \vec{B} inside the conductor at a distance d from the axis of the cylinder is
(A) $\mu_{0} J_{0} \hat{\varphi}$
(B) $-\frac{\mu_{0} J_{0} d}{2} \hat{\varphi}$
(C) $\frac{\mu_{0} J_{0} d^{2}}{3} \hat{\varphi}$
(D) $-\frac{\mu_{0} J_{0} d^{3}}{4} \hat{\varphi}$
Q. 33 The vector potential in a region is given as $\vec{A}(x, y, z)=-y \hat{i}+2 x \hat{j}$. The associd d magnetic induction \vec{B} is
(A) $\hat{i}+\hat{k}$
(B) $3 \hat{k}$
(C) $-\hat{i}+2 \hat{j}$
(D)

Q. 34 At the interface between two linear dielectrics (with dielectric constants_ and ε_{2}), the electric field lines bend, as shown in the figure. Assum (1n) the are no free charges at the interface. The ratio $\varepsilon_{1} / \varepsilon_{2}$ is
(A)
(C)
(B) $\cos \theta_{1} / \cos \theta_{2}$
(D) $\cot \theta_{1} / \cot \theta_{2}$
Q. 35 Which one of the following sets of Maxwell's equations for time-independe density ρ and current density \vec{J} is correct?
(A)

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

(C)

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=0 \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=0 \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
\end{aligned}
$$

(D)
Q. 36 A classical charged particle moving wil frec en y ω in a circular orbit of radius a, centred at the origin in the $x-y$ plane, emits electromagnetic radiation. At points $(b, 0,0)$ and $(0,0, b)$, where $b \gg$, th ele tromagnetic waves are
(A) circularly polarized and llipto lly polarized, respectively
(B) plane polarized an otio ly polarized, respectively
(C) plane polarized a do ic prly polarized, respectively
(D) circularly pola ized and plane polarized, respectively
Q. 37 A particle of nta m represented by the wavefunction $\psi(x)=A e^{i k x}$, where k is the wavevector $10, A=$ a constant. The magnitude of the probability current density of the particle is
(A) $1 \frac{\hbar k}{m}$
(B) $|A|^{2} \frac{\hbar k}{2 m}$
(C) $|A|^{2} \frac{(\hbar k)^{2}}{m}$
(D) $|A|^{2} \frac{(\hbar k)^{2}}{2 m}$
one-dimensional harmonic oscillator is in the state $\psi(x)=\frac{1}{\sqrt{14}}\left[3 \psi_{0}(x)-2 \psi_{1}(x)+\psi_{2}(x)\right]$, where $\psi_{0}(x), \psi_{1}(x)$ and $\psi_{2}(x)$ are the ground, first excited and second excited states, respectively. The probability of finding the oscillator in the ground state is
(A) 0
(B) $3 / \sqrt{14}$
(C) $9 / 14$
(D) 1
Q. 39 The wavefunction of a particle in a one-dimensional potential at time $t=0$ $\psi(x, t=0)=\frac{1}{\sqrt{5}}\left[2 \psi_{0}(x)-\psi_{1}(x)\right]$. where $\psi_{0}(x)$ and $\psi_{1}(x)$ are the ground and the first excited states of the particle with corresponding energies E_{0} and E_{1}. The wavefunction of the particle at a time t is
(A) $\frac{1}{\sqrt{5}} e^{-i\left(E_{0}+E_{\mathrm{i}}\right) t / 2 \hbar}\left[2 \psi_{0}(x)-\psi_{1}(x)\right]$
(B) $\frac{1}{\sqrt{5}} e^{-i E_{0} t / h}\left[2 \psi_{0}(x)-\psi_{1}(x)\right]$
(C) $\frac{1}{\sqrt{5}} e^{-i E_{1} t / \hbar}\left[2 \psi_{0}(x)-\psi_{1}(x)\right]$
(D) $\frac{1}{\sqrt{5}}\left[2 \psi_{0}(x) e^{-i E_{0} t / \hbar}-\psi_{1}(x) e^{-i E_{1} t / \hbar}\right]$
x-component of the ang, ar m mentum
osition operator, is equal to
Q. 40 The commutator $\left[L_{x}, y\right]$, where L_{x} is the x-component of the ang ar mentum operator and y is the y-component of the position operator, is equal to
(A) 0
(B) $i \hbar x$
(C) iny
(1) $i \hbar z$
Q. 41 In hydrogenic states, the probability of finding an elect on at $m=0$ is
(A) zero in state $\phi_{1 s}(r)$
(B) ns ero in state $\phi_{1 s}(r)$
on ero in state $\phi_{2 p}(r)$
(C) zero in state $\phi_{2 s}(r)$
Q. 42 Each of the two isolated vessels, A and B on vecu volumes, contains N molecules of a perfect monatomic gas at a pressul P. The temperatures of A and B are T_{1} and T_{2}, respectively. The two vessels are ough into thermal contact. At equilibrium, the change in entropy is
(A) $\frac{3}{2} N k_{B} \ln \left[\frac{\left.T_{1}^{2}+T^{2}\right]}{4 T T}\right]$
(B) $\quad N k_{B} \ln \left(\frac{T_{2}}{T_{1}}\right)$
(C) $\frac{3}{2} N k_{B} \ln [$

(D) $2 N k_{B}$
Q. 43 The inte ar ergy of n moles of a gas is given by $E=\frac{3}{2} n R T-\frac{a}{V}$, where V is the oll ne of the gas at temperature T and a is a positive constant. One mole of the gas e $\left(T_{1}, V_{1}\right)$ is allowed to expand adiabatically into vacuum to a final state V_{2}). The temperature T_{2} is
(A) $T_{1}+R a\left(\frac{1}{V_{2}}+\frac{1}{V_{1}}\right)$
(B) $\quad T_{1}-\frac{2}{3} R a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
(C) $T_{1}+\frac{2}{3} R a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
(D) $\quad T_{1}-\frac{1}{3} R a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
Q. 44 The mean internal energy of a one-dimensional classical harmonic osch equilibrium with a heat bath of temperature T is
(A) $\frac{1}{2} k_{B} T$
(B) $k_{B} T$
(C) $\frac{3}{2} k_{B} T$
(D) $3 k_{B} T$
Q. 45 A monatomic crystalline solid comprises of N atoms, out of which n atoms are in interstitial positions. If the available interstitial sites are N^{\prime}, the number of pos iblo microstates is
(A) $\frac{\left(N^{\prime}+n\right)!}{n!N!}$
(B) $\frac{N!}{n!(N+n)!n!\left(N^{\prime}+n\right.} \frac{N^{\prime}!}{}$
(C) $\frac{N!}{n!\left(N^{\prime}-n\right)!}$
(D)

Q. 46 A system of N localized, non-interacting spin $1 / 2$ ions m snetio moment μ each is kept in an external magnetic field H. If the system is in cilit cium at temperature T, the Helmholtz free energy of the system is
(A)

$$
N k_{B} T \ln \left(\cosh \frac{\mu H}{k_{B} T}\right)
$$

$$
\text { (B) } N k_{B} T \ln \left(2 \cosh \frac{\mu H}{k_{B} T}\right)
$$

(C) $\quad N k_{B} T \ln \left(2 \cosh \frac{\mu H}{k_{B} T}\right)$
$(\mathrm{D}) \quad-N k_{B} T \ln \left(2 \sinh \frac{\mu H}{k_{B} T}\right)$
Q. 47 The phase diagram of a pa icle of mass m and kinetic energy E, moving in a one-dimensional box wh h ctly elastic walls at $x=0$ and $x=\mathrm{L}$, is given by
(A)

(B)

(D)

Q. 48 In the microwave spectrum of identical rigid diatomic molecules, the separt between the spectral lines is recorded to be $0.7143 \mathrm{~cm}^{-1}$. The moment of inertia of th molecule, in $\mathrm{kg} \mathrm{m}^{2}$, is
(A) 2.3×10^{-36}
(B) 2.3×10^{-40}
(C) 7.8×10^{-42}
(D) 7.8×10^{-46}
Q. 49 Which one of the following electronic transitions in neon is NOT responsible for LASER action in a helium-neon laser?
(A) $6 \mathrm{~s} \rightarrow 5 \mathrm{p}$
(B) $5 \mathrm{~s} \rightarrow 4 \mathrm{p}$
(C) $5 \mathrm{~s} \rightarrow 3 \mathrm{p}$
(D) $4 \mathrm{~s} \rightarrow 3 \mathrm{p}$
Q. 50 In the linear Stark effect, the application of an electric field
(A) completely lifts the degeneracy of $\mathrm{n}=2$ level of hydrogen ato and plits $\mathrm{n}=2$ level into four levels
(B) partially lifts the degeneracy of $n=2$ level of hydrogon atom and splits $n=2$ level into three levels
(C) partially lifts the degeneracy of $n=2$ level of hedro on ay m and splits $n=2$ level into two levels
(D) does not affect the $\mathrm{n}=2$ levels
Q. 51 In hyperfine interaction, there is coupling twe a thelectron angular momentum \vec{J} and nuclear angular momentum \vec{I}, form g resultant angular momentum \vec{F}. The selection rules for the corresponding , uar m mumber F in hyperfine transitions are
(A) $\Delta F= \pm 2$ only
(B) $\Delta F= \pm 1$ only
(C) $\Delta F=0, \pm 1$
(D) $\Delta F= \pm 1, \pm 2$
Q. 52 A vibrational-electron spu am of homonuclear binary molecules, involving electronic ground state ardexcited state ε^{\prime}, exhibits a continuum at $\bar{v} \mathrm{~cm}^{-1}$. If the total energy of the Asso iated atoms in the excited state exceeds the total energy of the dissociated oms in the ground state by $E_{e x} \mathrm{~cm}^{-1}$, the dissociation energy of the molecule in the groand state is
)/2
(B) $\left(\bar{v}-E_{e x .}\right) / 2$
(C) $\left(\bar{v}-E_{e x}\right)$
(D) $\sqrt{\left(\bar{v}^{2}-E_{e x}^{2}\right)}$
Q. 3 NMR spectrum of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ comprises of three bunches of spectral linos. The number of spectral lines in the bunch corresponding to CH_{2} group is
(A) 1
(B) 2
(C) 3
(D) 4
Q. 54 The energy $E(\vec{k})$ of electrons of wavevector \vec{k} in a solid is given by $E(\vec{k})=A k^{2}+B k^{4}$, where A and B are constants. The effective mass of the electron at $|\vec{k}|=k_{0}$ is
(A) $A k_{0}^{2}$
(B) $\frac{\hbar^{2}}{2 A}$
(C) $\frac{\hbar^{2}}{2 A+12 B k_{0}^{2}}$
(D) $\frac{\hbar^{2}}{B k_{0}^{2}}$
Q. 55 Which one of the following statements is NOT correct about the Brillouin zones of a square lattice with lattice constant a ?
(A) The first BZ is a square of side $2 \pi / a$ in $k_{x}-k_{y}$ plane
(B) The areas of the first BZ and third BZ are the same
(C) The k-points are equidistant in k_{x} as well as in k_{y} directions
(D) The area of the second BZ is twice that of the first BZ
Q. 56 In a crystal of N primitive cells, each cell contains two monovalent atoms. The highest occupied energy band of the crystal is
(A) one-fourth filled
(C) half filled
(B) one-third filled
(D) completely filled
Q. 57 If the number density of a free electron gas changes from 10^{28} to,${ }^{26}$ el ctrons $/ \mathrm{m}^{3}$, the value of plasma frequency (in Hz) changes from 5.7×10^{15} to

(A) 5.7×10^{13}
(B) 5.7×10^{14}
(C) 5.7×10^{1}
D) 5.7×10^{17}
Q. 58 Which one of the following statements about superce ducto s is NOT true?
(A) A type I superconductor is completely di na fio
(B) A type II superconductor exhibits \sqrt{N} eissi r ffect upto the second critical magnetic field $\left(H_{C_{2}}\right)$
(C) A type II superconductor ey its 20 resistance upto the second critical magnetic field
(D) Both type I and type II cupo conductors exhibit sharp fall in resistance at the superconducting trans fior mpurature
Q. 59 Two dielectric material A arr-B exhibit both ionic and orientational polarizabilities. The variation of their s sceptibilities $\chi\left(=\varepsilon_{r}-1\right)$ with temperature T is shown in the figure, where is ${ }^{\text {ne }}$ ruative dielectric constant. It can be inferred from the figure that

(A) A is more polar and it has a smaller value of ionic polarizability than that of B
(B) A is more polar and it has a higher value of ionic polarizability than that of B
(C) B is more polar and it has a higher value of ionic polarizability than that of A
(D) B is more polar and it has a smaller value of ionic polarizability than that of A
Q. 60 The experimentally measured spin g factors of a proton and a neutron indicate that
(A) both proton and neutron are elementary point particles
(B) both proton and neutron are not elementary point particles
(C) while proton is an elementary point particle, neutron is not
(D) while neutron is an elementary point particle, proton is not
Q. 61 By capturing an electron, ${ }_{25}^{54} \mathrm{Mn}_{29}$ transforms into ${ }_{24}^{54} \mathrm{Cr}_{30}$ releasing
(A) a neutrino
(B) an antineutrino
(C) an α-particle
(D) a positron
Q. 62 Which one of the following nuclear processes is forbidden?
(A) $\bar{v}+p \rightarrow n+e^{+}$
(B) $\pi^{-} \rightarrow e^{-}+v_{e}+\pi^{0}$
(C) $\pi^{-}+p \rightarrow n+K^{+}+K^{-}$
(D)

Q. 63 To explain the observed magnetic moment of a deuter ($0.8 .174 \mu_{\mathrm{N}}$), its ground state wavefunction is taken to be an admixture of S and ta expectation values of the z-component of the magnetic moment in pu S A_{t} pure D states are $0.8797 \mu_{\mathrm{N}}$ and $0.3101 \mu_{\mathrm{N}}$, respectively. The contribution of th (D) tate to the mixed ground state is approximately
(A) 40%
(B) 4%
(c) 0.4%
(D) 0.04%
Q. 64 A sinusoidal input voltage v_{i} on requ ney ω is fed to the circuit shown in the figure, where $\mathrm{C}_{1} \gg \mathrm{C}_{2}$. If v_{m} is the rer v the of input voltage, the output voltage ($v_{\text {out }}$) is
(A) $2 v_{m}$
(B) $2 v_{0} \sin \omega t$
(C) $\sqrt{2} v_{m}$
(D) $\frac{v_{m}}{2} \sin \omega t$
Q. 65 The low-pass active filter shown in the figure has a cut-off frequency of 2 kHz pass band gain of 1.5 . The values of the resistors are

(A) $\mathrm{R}_{1}=10 \mathrm{k} \Omega ; \mathrm{R}_{2}=1.3 \Omega$
(B) $\mathrm{R}_{1}=30 \mathrm{k} \Omega ; \mathrm{R}_{2}=1, \Omega$
(C) $\mathrm{R}_{1}=10 \mathrm{k} \Omega ; \mathrm{R}_{2}=1.7 \mathrm{k} \Omega$
(D) $\mathrm{R}_{1}=30 \mathrm{k} \Omega \cdot \mathrm{R}_{2}=1.7 \mathrm{kS}$

Q. 66 In order to obtain a solution of the differential equati $\frac{d}{d t^{2}} \frac{d}{d t}+v_{1}=0$, involving voltages $v(t)$ and v_{1}, an operational amplifi $\sim\left(\mathrm{O}_{\mathrm{Am}}\right)$ circuit would require at least
(A) two Op-Amp integrators and one Op $4 m p$ adder
(B) two Op-Amp differentiators at $\mathrm{O}, \mathrm{O}_{\mathrm{p}} \mathrm{Amp}$ adder
(C) one Op-Amp integrator an Op Op-rmp adder
(D) one Op-Amp integrator, O Op- mp differentiator and one Op-Amp adder
Q. 67 In the given digital logic irc 1 t , \downarrow and B form the input. The output Y is
(A) $\mathrm{Y}=\overline{\mathrm{A}}$
(B) $Y=A \bar{B}$
(C) $\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$
(D) $\mathrm{Y}=\overline{\mathrm{B}}$
Q. 68 The largest analog output voltage from a 6-bit digital to analog converter (DAC) which produces 1.0 V output for a digital input of $\mathbf{0 1 0 1 0 0}$, is
(A) 1.6 V
(B) 2.9 V
(C) 3.15 V
(D) 5.0 V
Q. 69 A ripple counter designed with JK flip-flops provided with CLEAR (CL) inp shown in the figure. In order that this circuit functions as a MOD-12 counter, t NAND gate input (X_{1} and X_{2}) should be

Q. 70 The tank circuit of a Hartley oscillator is shown i the fgure. If M is the mutual inductance between the inductors, the oscillation
(A)

(C)

(C)
(B) $\frac{1}{2 \pi \sqrt{\left(\mathrm{~L}_{1}+\mathrm{L}_{2}-2 \mathrm{M}\right) \mathrm{C}}}$
(D) $\frac{1}{2 \pi \sqrt{\left(\mathrm{~L}_{1}+\mathrm{L}_{2}-\mathrm{M}\right) \mathrm{C}}}$

Common Data Questions

Common Data for Questions 71, 72, 73:
An unperturbed two-level system has energy eigenvalues E_{1} and E_{2}, and eigenfunctions

- $\binom{1}{0}$ and $\binom{0}{1}$. When perturbed, its Hamiltonian is represented by $\left(\begin{array}{cc}E_{1} & A \\ A^{*} & E_{2}\end{array}\right)$.
Q. 71 The first-order correction to E_{1} is
(A) $4 A$
(B) $2 A$
(C) A
Q. 72 The second-order correction to E_{1} is

(A) 0
(B) A
(C) $\frac{A^{2}}{E_{2}-E_{1}}$ (D) $\frac{A^{2}}{E_{1}-E_{2}}$
Q. 73 The first-order correction to the eigenfunction
(A)

(D)
$\binom{1}{1}$

Common Data for Quesuons 74, 75:

 One of the eig mu les of the matrix $\left(\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ is 5 .Q. ' 1 ether two eigenvalues are
(A) 0 and 0
(B) 1 and 1
(C) 1 and - 1
(D) - 1 and -1
Q. 75 The normalized eigenvector corresponding to the eigenvalue 5 is
(A) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
(B) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(C) $\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(D) $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Linked Answer Questions: Q. 76 to Q. 85 carry two marks each.

Statement for Linked Answer Questions 76 \& 77:

The powder diffraction pattern of a body centred cubic crystal is recorded by using $\mathrm{Cu} \mathrm{K}_{a}$ X-rays of wavelength $1.54 \AA$.
Q. 76 If the (002) planes diffract at 60°, the lattice parameter is
(A) $2.67 \AA$
(B) $3.08 \AA$
(C) $3.56 \AA$
(D) $5.34 \AA$
Q. 77 Assuming the atomic mass of the constituent atoms to be 50.94 amu, the den ity of the crystal in units of $\mathrm{kg} \mathrm{m}^{-3}$ is
(A) 3.75×10^{3}
(B) 4.45×10^{3}
(C) 5.79×10^{3}
(D) 889×10^{3}

Statement for Linked Answer Questions 78 \& 79:
A particle of mass m is constrained to move in a vertical plan a a trajectory given by $x=A \cos \theta, y=A \sin \theta$, where A is a constant.
Q. 78 The Lagrangian of the particle is
(A) $\frac{1}{2} m A^{2} \dot{\theta}^{2}-m g A \cos \theta$
(B) $\frac{1}{2} m A^{2} \dot{\theta}^{2}-m g A \sin \theta$
(C) $\frac{1}{2} m A^{2} \dot{\theta}^{2}$
(D) $\frac{1}{2} m A^{2} \dot{\theta}^{2}+m g A \cos \theta$
Q. 79 The equation of motion of $t^{\prime} 0$ artucle is
(A) $\ddot{\theta}-\frac{g}{A} \cos \theta=0$
(B) $\ddot{\theta}+\frac{g}{A} \sin \theta=0$
(C) $\ddot{\theta}=0$
(D) $\ddot{\theta}-\frac{g}{A} \sin \theta=0$

Statement or aked Answer Questions 80 \& 81:

A die ctrio here of radius R carries polarization $\vec{P}=k r^{2} \hat{r}$, where r is the distance from the $\mathrm{d} k$ is a constant. In the spherical polar coordinate system, $\hat{r}, \hat{\theta}$ and $\hat{\varphi}$ are the unit

80 The bound volume charge density inside the sphere at a distance r from the centre is
(A) $-4 k R$
(B) $-4 k r$
(C) $-4 k r^{2}$
(D) $-4 k r^{3}$
Q. 81 The electric field inside the sphere at a distance d from the centre is
(A) $\frac{-k d^{2}}{\varepsilon_{0}} \hat{r}$
(B) $\frac{-k R^{2}}{\varepsilon_{0}} \hat{r}$
(C) $\frac{-k d^{2}}{\varepsilon_{0}} \hat{\theta}$
(D) $\frac{-k R^{2}}{\varepsilon_{0}} \hat{\theta}$

Statement for Linked Answer Questions 82 \& 83:
Consider Fermi theory of β-decay.
Q. 82 The number of final states of electrons corresponding to momenta between p and $p+d p$ is
(A) independent of p
(B) proportional to $p d p$
(C) proportional to $p^{2} d p$
(D) proportional to $p^{3} d p$
Q. 83 The number of emitted electrons with momentum p and energy E, in the all wea approximation, is proportional to (E_{0} is the total energy given up by the nucleus)
(A) $\left(E_{0}-E\right)$
(B) $p\left(E_{0}-E\right)$
(C) $p^{2}\left(E_{0}-E\right)^{2}$
(D) $\rightarrow-E$

Statement for Linked Answer Questions 84 \& 85:
Consider a radiation cavity of volume V at temperature T.
Q. 84 The density of states at energy E of the quantized rad tion (hotons) is
(A) $\frac{8 \pi V}{h^{3} c^{3}} E^{2}$
(B) $\frac{8 \pi V}{h^{3} c^{3}} E^{\frac{3}{2}}$
(C) $\frac{\pi \nu}{3} E$
(D) $\frac{8 \pi V}{h^{3} c^{2}} E^{\frac{1}{2}}$
Q. 85 The average number of photons in eq iibrim inside the cavity is proportional to
(A) T
(B)
(C) T^{3}
(D) T^{4}
NI OF THE QUESTION PAPER

