METALLURGICAL EN

MT:METALLURGICAL ENGINEERING

Duration: Three Hours

StudentBounty.com Maximum Marks:100

the

Please read the following instructions carefully:

General Instructions:

- 1. Total duration of examination is 180 minutes (3 hours).
- 2. The clock will be set at the server. The countdown timer in the top right corner of screen will display the remaining time available for you to complete the examination. When the timer reaches zero, the examination will end by itself. You will not be required to end or submit your examination.
- 3. The Question Palette displayed on the right side of screen will show the status of each question using one of the following symbols:

	AL 100
)	You have not visited the question yet.
	You have not answered the question.
	You have answered the question.
	You have NOT answered the question, but have marked the question for review.
5	You have answered the question, but marked it for review.

The Marked for Review status for a question simply indicates that you would like to look at that question again. If a question is answered and Marked for Review, your answer for that question will be considered in the evaluation.

Navigating to a Question

- 4. To answer a question, do the following:
 - a. Click on the question number in the Question Palette to go to that question directly.
 - Select an answer for a multiple choice type question. Use the virtual numeric keypad to enter a number as answer for a numerical type question.
 - Click on Save and Next to save your answer for the current question and then go to the next question.
 - Click on Mark for Review and Next to save your answer for the current question, mark it d. for review, and then go to the next question.
 - Caution: Note that your answer for the current question will not be saved, if you navigate to another question directly by clicking on its question number.

You can view all the questions by clicking on the Question Paper button. Note that the options for 5 multiple choice type questions will not be shown.

1

www.StudentBounty.com

Answering a Ouestion

- 6. Procedure for answering a multiple choice type question:
 - a. To select your answer, click on the button of one of the options
- studentBounty.com To deselect your chosen answer, click on the button of the chosen option again or click on the b. Clear Response button

METALLURGICAL EN

- c. To change your chosen answer, click on the button of another option
- d. To save your answer, you MUST click on the Save and Next button
- e. To mark the question for review, click on the Mark for Review and Next button. If an answer is selected for a question that is Marked for Review, that answer will be considered in the evaluation.
- 7. Procedure for answering a numerical answer type question:
 - a. To enter a number as your answer, use the virtual numerical keypad
 - b. A fraction (eg., -0.3 or -.3) can be entered as an answer with or without '0' before the decimal point
 - To clear your answer, click on the Clear Response button c.
 - d. To save your answer, you MUST click on the Save and Next button
 - e. To mark the question for review, click on the Mark for Review and Next button. If an answer is entered for a question that is Marked for Review, that answer will be considered in the evaluation.
- 8. To change your answer to a question that has already been answered, first select that question for answering and then follow the procedure for answering that type of question.
- 9. Note that ONLY Questions for which answers are saved or marked for review after answering will be considered for evaluation.

Paper specific instructions:

2013

- StudentBounty.com 1. There are a total of 65 questions carrying 100 marks. Questions are of multiple choice type numerical answer type. A multiple choice type question will have four choices for the answer with only one correct choice. For numerical answer type questions, the answer is a number and no choices will be given. A number as the answer should be entered using the virtual keyboard on the monitor.
- 2. Questions Q.1 Q.25 carry 1mark each. Questions Q.26 Q.55 carry 2marks each. The 2marks questions include two pairs of common data questions and two pairs of linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is not attempted, then the answer to the second question in the pair will not be evaluated.
- 3. Questions Q.56 Q.65 belong to General Aptitude (GA) section and carry a total of 15 marks Questions Q.56 - Q.60 carry 1 mark each, and questions Q.61 - Q.65 carry 2 marks each.
- 4. Questions not attempted will result in zero mark. Wrong answers for multiple choice type questions will result in **NEGATIVE** marks. For all 1 mark questions, ¹/₂ mark will be deducted for each wrong answer. For all 2 marks questions, $\frac{3}{3}$ mark will be deducted for each wrong answer. However, in the case of the linked answer question pair, there will be negative marks only for wrong answer to the first question and no negative marks for wrong answer to the second question. There is no negative marking for questions of numerical answer type.
- 5. Calculator is allowed. Charts, graph sheets or tables are NOT allowed in the examination hall.
- 6. Do the rough work in the Scribble Pad provided.

			SE .	
2013			METALLURGICAL EN T	
Univer Accele Farada	UL DATA rsal gas constant, <i>R</i> : 8.3 eration due to gravity, <i>g</i> by constant, <i>F</i> : 96500 C nagneton, $\mu_{\rm B}$: 9.273 × 1	g: 9.81 m/s ² 2/mol	METALLURGICAL EN HER HER DUITU	
Q. 1 –	Q. 25 carry one mark	c each.		m
Q.1	Degree and order of	the differential equat	tion $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 6y = 0$, respectively, are	
	(A) 1 and 2	(B) 2 and 1	(C) 1 and 1 (D) 2 and 2	l
Q.2	As the concentration	of point defects in a	crystal increases, its configurational entropy	
	(A) does not change(C) increases		(B) decreases(D) initially increases and then decreases	
Q.3		A-B, ε_{AA} , ε_{BB} and ε_{AB} conscibility gap will occurs	correspond to A-A, B-B and A-B bond energies cur if	
		/	(B) $\varepsilon_{AB} \leq \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$ (D) $\varepsilon_{AB} \leq \frac{1}{4} (\varepsilon_{AA} + \varepsilon_{BB})$	
Q.4	Critical value of the	Gibbs energy of nucl	leation at equilibrium temperature is	
	(A) zero	(B) infinite	(C) positive (D) negative	
Q.5	With respect to the r	natrix of Al-Cu alloys	vs, G-P zones are	
	(A) coherent(C) semi-coherent	N	(B) incoherent(D) chemically indistinguishable	
Q.6	Which one of the fol	llowing techniques do	oes NOT require quenching to obtain final case hardness?	
	(A) Flame hardening		(B) Induction hardening	
	(C) Nitriding	6100	(D) Carburizing	
Q.7	Which one of the fol	llowing elements is a	n austenite stabilizer?	
	(A) Nitrogen	- 19 E	(B) Molybdenum	
C	(C) Vanadium	1	(D) Tungsten	
Q.8			eated and equilibrated in the inter-critical region followed ucture of the quenched steel sheet consists of	
1	(A) fully martensite		(B) proeutectoid ferrite + martensite	
1	(C) martensite + pea	rlite	(D) martensite + austenite	
Q.9	As compared to the a given material	engineering stress-en	ngineering strain curve, the true stress-true strain curve for	
	(A) lies above and to(B) lies below and to(C) crosses the engin(D) is identical		ering strain curve	

(D) is identical

Which one of the following does NOT improve fatigue life of a steel component? O.10

- (A) Nitriding
- (C) Improving surface finish
- (B) Decarburization (D) Shot-peening
- 0.11 When two phases α and β in an alloy are in thermodynamic equilibrium, then

(B) $V_{\rm m}^{\alpha} = V_{\rm m}^{\beta}$ (A) $c_n^{\alpha} = c_n^{\beta}$

(C) $G_{\rm m}^{\alpha} = G_{\rm m}^{\beta}$

StudentBounty.com (D) $\overline{G}_{i}^{\alpha} = \overline{G}_{i}^{\beta}$

METALLURGICAL EN

Q.12 Isothermal compressibility of a material is given by

(A)
$$-\frac{1}{p} \left(\frac{\partial V}{\partial p} \right)_T$$
 (B) $\frac{1}{p} \left(\frac{\partial V}{\partial p} \right)_T$
(C) $-\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$ (D) $\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

In the Ellingham diagram for oxides, C-CO line cuts the M-MO line at temperature T_1 and the 0.13 M'-M'O line at a higher temperature T_2 . At a temperature greater than T_1 and less than T_2 , carbon can reduce

(A) MO	(B) both MO and M'O
(C) M'O	(D) neither MO nor M'O

- Which one of the following can give information about the corrosion rate? Q.14
 - (A) Pourbaix diagram

(B) Polarization technique

(C) EMF series

- (D) Galvanic series
- Q.15 In a roasting process, the set of conditions that favour sulphate formation from metal sulphide concentrates are
 - P. high temperature Q. high partial pressure of oxygen R. use of excess air S. high partial pressure of SO₃
 - (A) P, R and S (C) Q and S

- (B) P, Q and R (D) R and S
- Q.16 High top pressure in a blast furnace operation
 - (A) favours the solution-loss reaction
 - (B) suppresses the solution-loss reaction
 - (C) decreases gas-solid contact time
 - (D) increases coke rate

In L-D steelmaking, the final slag can be best described as O.17

(A) oxidizing	(B) basic
(C) oxidizing and basic	(D) reducing and basic

Q.18 The permeability of burden in an ironmaking blast furnace can be improved by using

- (A) fine charge
- (B) agglomerated charge
- (C) oxygen enriched air blast
- (D) pulverized coal injection through the tuyeres

www.StudentBounty.com

		S.
2013		METALLURGICAL EN
Q.19	For a good quality brazing, the molten filler	alloy should have
	(A) low contact angle with the base metal(C) high surface tension	METALLURGICAL EN Alloy should have (B) low density (D) high viscosity (B) plain carbon steel
Q.20	Risers are NOT required for casting	5.6
	(A) stainless steel	(B) plain carbon steel
	(C) grey cast iron	(D) white cast iron
Q.21	For scalar fields ϕ and $\psi,$ the value of $\nabla \cdot (\nabla \phi$	×∇ψ) is
Q.22	The atomic packing fraction of diamond cub	ic structure is
Q.23	The total number of possible heat transfer me	ode(s) is
Q.24	If σ and ε are true stress and true strain, resp imparted to a material obeying $\sigma = 1050\varepsilon^{0.25}$	ectively, the maximum true uniform strain that can be is

Q.25 Arc welding is done using current, voltage and welding speed of 200 A, 20 V and 0.01 m/s, respectively. The heat input in kJ per unit length is _____

Q. 26 to Q. 55 carry two marks each.

Q.26 Which one of the following series is divergent?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$
 (B) $\sum_{n=1}^{\infty} \frac{1}{n}$ (C) $\sum_{n=0}^{\infty} \frac{1}{2^n}$ (D) $\sum_{n=1}^{\infty} \frac{1}{n^n}$

Q.27 Taylor series expansion of the function $f(x) = \frac{x}{1+x}$ around x = 0 will be

(A) $1 + x + x^2 + x^3 + \cdots$	(B) $1 - x + x^2 - x^3 + \cdots$
(C) $0 + x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$	(D) $0 + x - x^2 + x^3 - \cdots$
2 3	

Q.28 Which one of the following attributes is **NOT** correct for the matrix?

 $\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$, where $\theta = 60^{\circ}$ (A) orthogonal

(A) orthogonal(C) skew-symmetric

(B) singular(D) positive-definite

Q.29 A unit cell of an element has maximum linear density along the [110] direction. The packing density of its (100) plane is

(A) 0.68 (B) 0.74 (C) 0.79 (D) 0.91

- Q.30 For an FCC metal, the ratio of interplanar spacing obtained from the first two peaks of the X-ray diffraction pattern is
 - (A) 1.91 (B) 1.63 (C) 1.41 (D) 1.15

013					METALLU	JRGICAL EN	8	
Q.31	There are 150 gears and rest are above combined probabilit above the tolerance	e the require ity of random	d tolerance.	If the select	ion is done w	d tolerance, 21 vithout replace ce and then a se	me	
	(A) 0.016	(B) 0.032	2	(C) 0.492	(D)) 0.984		2
Q.32	Match the metal in	Group I with	its correspond	ding ore in G	coup II			
		oup I	Group II				28	
	(P) (Q)		 Monazite Cassiterite 					
	(Q) (R)		(3) Penlandite			100	1.	
	(S)		(4) Galena			CV	11	
	(A) P-1, Q-3, R-4, S (B) P-4, Q-2, R-3, S (C) P-3, Q-1, R-4, S (D) P-2, Q-3, R-1, S	S-1 S-2		1	58			
Q.33	The yield strength or grain size from 64 p µm is			ength of this n				
	(A) 110	(B) 125		(C) 140	(D)) 165		
Q.34	In a brittle material and surface energy						400 GPa	
	(A) 375	(B) 412	110	(C) 327	(D)) 447		
Q.35	Saturation magneti magnetic moment p				rameter 0.2 nn	n is 600 kA/m	. The net	
	(A) 8.08×10^{57}	(B) 2.02	× 10 ⁵⁷	(C) 0.517	(D)	0.129		
Q.36	A 480 mm thick sla 0.5, the maximum j				meter. For a co	pefficient of frie	ction of	
	(A) 90	(B) 180		(C) 240	(D)) 360		
Q.37	Match the defects l Group II	isted in Grou	p I with the co	orresponding r	nanufacturing	process listed in	n	
5		oup I		oup II				
5.		-peel effect		trusion				
1	(Q) Chevro (R) Flash	on cracking		eep drawing rc welding				
1	(S) Underc	ut	(3) Al (4) Fo					
9	(A) P-1, Q-2, R-4, S (B) P-2, Q-3, R-1, S (C) P-3, Q-4, R-2, S (D) P-2, Q-1, R-4, S	8-4 8-1						

- StudentBounty.com O.38 Match the powder production technique given in **Group I** with the corresponding shape Group II
 - Group I (P) Reduction (Q) Gas Atomization (R) Milling (S) Electrolysis

(A) P-2, Q-4, R-1, S-3 (B) P-1, Q-3, R-2, S-4 (C) P-2, Q-3, R-4, S-1 (D) P-3, Q-2, R-1, S-4

- **Group II** (1) Flaky (2) Spongy (3) Dendritic (4) Spherical
- Match the suitability of non-destructive testing method in Group I for the detection of defects Q.39 listed in Group II
 - Group I (P) Magnetic particle inspection (O) X-ray radiography (R) Dye penetrant test

- (S) Ultrasonic testing
- (A) P-2, Q-4, R-3, S-1 (B) P-4, Q-2, R-1, S-3 (C) P-3, Q-1, R-2, S-4 (D) P-1, Q-4, R-2, S-3

Group II

- (1) Surface crack in martensitic stainless steels
- (2) Surface crack in austenitic stainless steels
- (3) Hairline crack in aluminium
- (4) Inclusions in steels
- For the following electrochemical reaction $Sn + 2H^+ = Sn^{2+} + H_2$, if the solution has Sn^{2+} O.40 concentration 10⁻² M and pH 5 at 298 K, which of the following is true? Given: standard reduction potential for $\operatorname{Sn}^{2+} + 2e^- \rightarrow \operatorname{Sn}$ is -0.136 V versus SHE; $p_{H_2} = 1$ atm
 - (A) Sn undergoes oxidation (C) Sn^{2+} undergoes reduction

(B) H⁺ undergoes reduction (D) No net reaction

Q.41 Match the unit operation in Group I with its corresponding principle in Group II:

Group I

(P) Jigging (Q) Tabling (R) Heavy media separation (S) Flotation

(A) P-3, Q-4, R-2, S-1 (B) P-2, Q-3, R-1, S-4 (C) P-4, Q-2, R-3, S-1 (D) P-1, Q-3, R-2, S-4

Group II

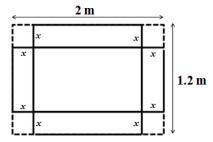
(1) Modification of surface tension

- (2) Difference in density
- (3) Differential initial acceleration
- (4) Differential lateral movement

0.42 Determine the correctness or otherwise of the following Assertion (a) and Reason (r).

Assertion: For the extraction of metal values from their sulphide concentrates by hydrometallurgical route, leaching with oxygen under high pressure is used.

Reason: Presence of oxygen under high pressure causes roasting of sulphides, which helps in leaching of the values.


(A) **a** is true but **r** is false

(B) **a** is false but **r** is true

(C) both **a** and **r** are true, and **r** is the reason for **a**

(D) both **a** and **r** are true, but **r** is not the reason for **a**

- Q.43 The aperture size (in μ m) of a 200 mesh sieve having a wire diameter of 53 μ m is
- StudentBounty.com Q.44 From a 2 m \times 1.2 m sheet, squares are cut out from each of the four corners as shown in the figure and then the sides are bent to form an open box. The maximum possible volume (in m^3) of the box is

- Q.45 Applying the secant method, the first approximation to the root of f(x) = 1starting $+ \ln x +$ with function values at x = 0.3 and x = 0.4, is
- Q.46 The critical internal crack length (in mm) in a steel having K_{ic} of 45 MPa \sqrt{m} to support a Mode-I stress of 400 MPa is
- Q.47 Ladle deoxidation of liquid steel is done at 1600°C by adding ferro-aluminium. By assuming Stokes law behaviour, time (in s) required for alumina particles of 50 µm diameter to float to the surface from a depth of 2 m would be

[Given: density of steel = 7000 kg/m^3 , density of alumina = 3650 kg/m^3 , viscosity of steel = 6×10^{-3} kg/m/s]

Common Data Questions

Common Data for Questions 48 and 49:

A steel specimen containing 0.2 wt.% C is carburized in an atmosphere that maintains a carbon content of 1.2 wt.% C at the surface of the specimen.

Given:

For carbon diffusion in austenite: $D_0=2.0\times10^{-5}$ m²/s Activation energy for diffusion, Q=142 kJ/mol

у	erf(y)
0.85	0.7707
0.90	0.7970
0.95	0.8209

O.48 What is the depth (in μ m) from the surface of the specimen at which a composition of 0.4 wt.% C is obtained after carburizing at 870°C for 10 h?

(A) 15	(B) 84	(C) 113	(D) 875
		(-) -	() - · · ·

How long (in h) will it take to double the depth at which 0.4 wt.% C is reached? Q.49

(A) 40	(B) 20	(C) 18	(D) 14

www.StudentBounty.com

Common Data for Questions 50 and 51:

Integral enthalpy of mixing (in J/mol) of liquid (Cu, Zn) solution can be approximated by $\Delta H_{\rm m}^{\rm mix} = -19250 x_{\rm Cu} x_{\rm Zn}$

Q.50 The corresponding partial molar enthalpy of mixing (in J/mol) for Cu is

(A) $19250x_{Zn}^2$ (B) $-19250x_{Cu}^2$ (C) $38500x_{Zn}-19250x_{Zn}^2-19250$ (D) $-19250x_{Zn}^2$

Q.51 Assuming regular solution behaviour, the solution parameter (in J/mol) is

(A) -19250 (B) -9625

(C) 13.75

StudentBounty.com

METALLURGICAL EN

(D) 2315

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

The density and associated crystallinity for two polypropylene samples are as follows:

density, g/cm³crystallinity, %1.20501.4480

Q.52	Density of total	ly amorphous polypropy	lene is	
	(A) 0.64	(B) 0 .74	(C) 0.84	(D) 0.94

Q.53 The percent crystallinity of polypropylene sample having a density of 1.3 g/cm^3 is

(A) 54 (B) 64 (C) 74 (D) 84

Statement for Linked Answer Questions 54 and 55:

An edge dislocation is present in α -Fe. Atomic diameter of iron atom is 0.25 nm and its shear modulus is 70 GPa.

Q.54 Modulus of the Burgers vector (in nm) is

(A) 0.125 (B) 0.25 (C) 0.50 (D) 0.625

Q.55 Energy (in J/m) of the dislocation is

(A) 0.5×10^{-9} (B) 1.1×10^{-9} (C) 2.2×10^{-9} (D) 4.4×10^{-9}

2013				METALLURGICAL EN he number is: (D) 96	
	al Aptitude (GA	A) Questions		Mining of the second se	200
Q. 56	– Q. 60 carry on	e mark each.			OLI
Q.56	A number is as mu	ich greater than 75 a	s it is smaller than 117. T	he number is:	
	(A) 91	(B) 93	(C) 89	(D) 96	
Q.57	Ī	II II	tts to go out of the class I IV ts of the sentence is gran		\$
	(A) I	(B) II	(C) III	(D) IV	1.)
Q.58	Which of the following the fol	lowing options is th	he closest in meaning to	the word given below:	1
	Primeval			11 10	
	(A) Modern(C) Primitive		(B) Historic (D) Antique	Ci	
Q.59	Friendship, no m	atter how	it is, has its limitatio	ns.	
	(A) cordial			- 12	
	(B) intimate				
	(C) secret			1	
	(D) pleasant		14 F	11.5	
Q.60	Select the pair th Medicine: Healt		relationship similar to t	that expressed in the pair:	
	(A) Science: Expe(C) Education: Kn		(B) Wealth: Pea (D) Money: Hap		
Q. 61	to Q. 65 carry t	wo marks each.			
Q.61			s such that $2X + Y \le 6$ an f(X, Y) = 3X + 6Y will	$d X + 2Y \le 8$. For which of the lique maximum value?	
C	(A) (4/3, 10/3)	V		-	

(B) (8/3, 20/3)

(C) (8/3, 10/3)

(D) (4/3, 20/3)

Q.62 If |4X - 7| = 5 then the values of 2|X| - |-X| is:

(A) 2, 1/3 (B) 1/2, 3 (C) 3/2, 9 (D) 2/3, 9

StudentBounty.com Following table provides figures (in rupees) on annual expenditure of a firm for two years O.63 and 2011.

Category	2010	2011
Raw material	5200	6240
Power & fuel	7000	9450
Salary & wages	9000	12600
Plant & machinery	20000	25000
Advertising	15000	19500
Research & Development	22000	26400

In 2011, which of the following two categories have registered increase by same percentage?

- (A) Raw material and Salary & wages
- (B) Salary & wages and Advertising
- (C) Power & fuel and Advertising
- (D) Raw material and Research & Development
- Q.64 A firm is selling its product at Rs. 60 per unit. The total cost of production is Rs. 100 and firm is earning total profit of Rs. 500. Later, the total cost increased by 30%. By what percentage the price should be increased to maintained the same profit level.
 - (A) 5 (B) 10 (C) 15 (D) 30
- Q.65 Abhishek is elder to Savar. Savar is younger to Anshul.

Which of the given conclusions is logically valid and is inferred from the above statements?

- (A) Abhishek is elder to Anshul
- (B) Anshul is elder to Abhishek
- (C) Abhishek and Anshul are of the same age
- (D) No conclusion follows

END OF THE QUESTION PAPER

1	Paper	Q.No	Key(s)/Value(s)
	MT	1	A
	MT	2	D
	MT	3	A
	MT	4	В
	MT	5	A
	MT	6	С
	MT	7	А
	MT	8	В
	MT	9	A
	MT	10	В
	MT	11	D
	MT	12	С
	MT	13	A
	MT	14	В
	MT	15	С
	MT	16	В
	MT	17	С
	MT	18	В
	MT	19	A
	MT	20	c V
	MT	21	0
	MT	22	0.339 to 0.341
	MT	23	3
	MT	24	0.25
1	MT	25	400
i	MT	26	В
ĺ	MT	27	D
1	MT	28	Marks to All
	MT	29	С
	MT	30	D
	MT	31	A
	MT	32	С
	MT	33	В
	MT	34	D
	MT	35	D

						2 2	
G	ATE	2013 : Answer k	eys for l	MT - N	Veta	llurgical Enginee	identBounty.com
per	Q.No	Key(s)/Value(s)		Paper	Q.No	Key(s)/Value(s)	OOL.
1T	1	A		MT	36	A	24
1T	2	D		MT	37	D	5.
1T	3	А		MT	38	А	3
1T	4	В		MT	39	D	
1T	5	A		MT	40	С	
1T	6	С		MT	41	А	30
1T	7	A		MT	42	С	63
1T	8	В		MT	43	73 to 75	
1T	9	A		MT	44	0.257 to 0.263	1
1T	10	В		MT	45	0.314 to 0.326	
1T	11	D		MT	46	7.9 to 8.3	
1T	12	С		MT	47	2626 to 2632	
1T	13	A		MT	48	D	
1T	14	В		МТ	49	А	
1T	15	С		MT	50	D	
1T	16	В		MT	51	A	
1T	17	С		MT	52	D	
1T	18	В	44	MT	53	В	
1T	19	A	1	MT	54	В	
1T	20	c 🔪		MT	55	С	
1T	21	0		МТ	56	D	
1T	22	0.339 to 0.341	. M.	MT	57	В	
1T	23	3	11	МТ	58	С	
1T	24	0.25		МТ	59	В	
1T	25	400		МТ	60	С	
1T	26	В		MT	61	A	
1T	27	D		MT	62	В	
1T	28	Marks to All		MT	63	D	
17	29	С		MT	64	А	
Т	30	D		MT	65	D	
T.	31	A			<u>, </u>		1