MT : METALLURGICAL ENGINEERING

Duration : Three Hours

Maximum Marks

Read the following instructions carefully

- StudentBounty.com 1. This question paper contains 16 printed pages including pages for rough work. Please check all pages and report discrepancy, if any,
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All the questions in this question paper are of objective type.
- 5. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as a wrong answer.
- 6. Questions 1 through 20 are 1-mark questions and questions 21 through 85 are 2-mark questions.
- 7. Questions 71 through 73 is one set of common data questions, questions 74 and 75 is another pair of common data questions. The question pairs (76, 77), (78, 79), (80, 81), (82, 83) and (84, 85) are questions with linked answers. The answer to the second question of the above pairs will depend on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. NEGATIVE MARKING: For Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. For Q.21 to Q.75, 0.5 mark will be deducted for each wrong answer. For the pairs of questions with linked answers, there will be negative marks only for wrong answer to the first question, i.e. for Q.76, Q.78, Q.80, Q.82 and Q.84, 0.5 mark will be deducted for each wrong answer. There is no negative marking for Q.77, Q.79, Q.81, Q.83 and Q.85.
- 10. Calculator without data connectivity is allowed in the examination hall.
- 11. Charts, graph sheets and tables are NOT allowed in the examination hall.
- 12. Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.

2008

2008				Se
Useful	Data	an averback of the	Contraction of a	.96
Univers Avogad	al gas constant = 8.31 lro's Number = 6.023	4 J mol ⁻¹ K ⁻¹ x 10^{23} atoms mol ⁻¹		
Note: A	All compositions are	in wt.% unless otherw	ise specified.	
Q. 1 -	Q. 20 carry one i	nark each.		
Q.1	The yield point pher	nomenon observed in ann	ealed low carbon steels	is due to the presence of
	(A) silicon	(B) chromium	(C) phosphorous	(D) carbon
Q.2	In a tensile test of a	ductile material, necking	starts at	
	(A) lower yield stress(C) ultimate tensile stress	strength	(B) upper yield stress(D) just before fracture	s ire
Q.3	Fatigue resistance of	f a steel is reduced by		
	(A) decarburization(C) reducing the gra	in size	(B) polishing the sur(D) shot peening	face
Q.4	The stress concentra	tion factor K_t for a circulation	ar hole located at the ce	nter of a plate is
	(A) 0	(B) 1	(C) 3	(D) tends to ∞
Q.5	Cassiterite is an imp	ortant source for		
	(A) tin	(B) titanium	(C) molybdenum	(D) thorium
Q.6	High top pressure in	the blast furnace		
	(A) decreases the tin(B) increases the tim(C) increases fuel cc(D) increases the rat	ne of contact between gas ne of contact between gas onsumption e of solution loss reaction	s and solid and solid	
Q.7	For a closed system	of fixed internal energy a	and volume, at equilibri	um
	(A) Gibb's free ener(C) Helmholtz's free	rgy is minimum e energy is minimum	(B) entropy is maxin (D) enthalpy is maxi	num mum
Q.8	Intergranular corros	ion of 18-8 stainless steel	can NOT be prevented	by
	(A) reducing the car(B) quenching it from(C) adding strong car(D) increasing the car	bon content to less than 0 m high temperature to pro arbide forming elements arbon content	0.05% event chromium carbide	precipitation
Q.9	Riser is NOT requir	ed for the castings of		
	(A) grey cast iron	(B) white cast iron	(C) Al-4% Cu	(D) Al-12% Si
Q.10	The NDT technique	used to detect deep lying	defects in a large sized	casting is
	(A) liquid penetrant(C) ultrasonic inspective	inspection ction	(B) magnetic particle(D) eddy current insp	e inspection pection

3	parties and the second						C MT
		-	fabasas	in a quaterns	erv system at atmost	oheric pressure ar	760
.11	The maximum nui	mber o	i phases	in a quaterna	(C) A	(D) 5	00
	(A) 2	. (B) 3		(C) 4	(D) 5	1000 (A)
.12	In Cu-Al phase di in Al is less than 1	agram, 1%. Th	the solute Hume-	bility of Al i Rothery rule	n Cu at room tempe that justifies this di	rature is about 10 fference is	0% and that of Cu
	(A) size factor				(B) electro-negat	ivity	
	(C) structure				(D) valency		
0.13	Mannesmann pro	cess					
	(A) is a cold work(B) is used for ma(C) uses parallel r(D) is used for ma	cing pro aking the colls aking t	ocess hin walle hick wall	d seamless to ed seamless	ubes tubes		
Q.14	The intensive the	rmody	namic va	riables amor	ng the following are		
	(P) pressure						
	(Q) volume						
	(R) temperature (S) enthalpy						
	(A) P, Q		(B) P, R		(C) R, S	(D) Q, R	
Q.15	In a binary phase	diagra	am, the a	ctivity of the	solute in a two pha	se field at a given	temperature
	(A) increases line	early w	vith the so	olute content	nie in dinità est		
	(B) decreases lin	early v	with the s	olute content	t gilt more les		
	(C) remains cons	stant	a coupra	root of the s	colute content		
	(D) is proportion	iai to u	ie square	TOOL OF the 3	orate content		
Q.16	In Jominy curves	s of ste	el A (Fe-	-0.4% C) and	l steel B (Fe-0.4% C	C -1.0% Ni),	
	(A) depth of hard	dening	in steel A	A is more that	in in steel B		
	(B) depth of hard	dening	in steel I	B is more that	in in steel A	B	
	(D) hardness at t	the que	enched en	id in steel B	is more than in steel	IA	
Q.17		3 1	2				
	Determinant of	1 2	1 is				
		(4 2	3)				
	(A) -2		(B) –1		(C) 1	(D) 2	
0.19	- dr						
Q.18	$\int \frac{dx}{a+bx}$ is						
	(A) $\frac{1}{-\ln(a+bx)}$	c)+c	(B) ln((a+bx)+c	(C) $b\ln(a+b)$	(c) + c (D) -	$\frac{1}{a}\ln(a+bx)+c$
	b						
0.10	b The value of dv	/dx for	the follo	wing data se	et at $x = 3.5$, comput	ed by central diff	ference method, is

	A SALAN AND A S			PAPER - M
Q.20	The velocity at which it, is known as	ch particles from a	fluidized bed are carried	away by the fluid
	(A) elutriation veloc(C) minimum fluidiz	ity ation velocity	(B) terminal vel (D) superficial v	ocity velocity
). 21	to 0.75 carry two	marks each		mail sector
0.01	es grie entry the	marks cach.		
Q.21	A metal with an ave 500 MPa. The friction	rage grain size of 3 on stress of the meta	6 μm has yield strength al in MPa is	of 250 MPa and that with 4 μ m has
	(A) 31.2	(B) 62.5	(C) 125	(D) 250
Q.22	The stacking sequen	ce of close packed	planes with a stacking fa	ult is
	(A) <i>a b c a b c a b c</i>		(B) a b a b a b a	bab
	(C) <i>a b c a c a b c a b</i>	6	(D) <i>a b c a b a c</i>	b a
Q.23	The slip directions of	n a $(\bar{1}1\bar{1})$ plane of a	fcc crystal are	
	(A) [101], [011], [11	0]	(B) [101] [10]	[10]]
	(C) [101], [110], [01	īj	(D) [01], [01]	I. [10]
Q.24	The correct statemen	ts among the follow	ving are	
	(P) screw dislocation(Q) screw dislocation(R) edge dislocations(S) edge dislocations	s cannot climb as cannot cross-slip cannot climb cannot cross-slip		
	(A) P, R	(B) P, S	(C) Q, R	(D) Q, S
Q.25	A steel bar (elastic n of 1 GPa and undergo	nodulus = 200 GPa bes a plastic strain o	and yield strength = 400 of 2%. The elastic strain	0 MPa) is loaded to a tensile stress in the bar in percent is
	(A) 0	(B) 0.2	(C) 0.5	(D) 2.0
Q.26	The ASTM grain s magnification of 200.	ize number of a X is	material which shows	64 grains per square inch at a
	(A) 5	(B) 6	(C) 7	(D) 8
Q.27	Two samples P and O strengths of P and Q,	2 of a brittle mater measured normal t	ial have crack lengths in o the cracks, will be	the ratio 4:1. The ratio of fracture
	(A) 1:4	(B) 1:2	(C) 2:1	(D) 4:1
0.28	The structure-sensitive	e properties are		
	(P) elastic modulus(Q) yield strength(R) melting point	o properties are		
	(S) fracture strength			and the state of the second state of the

2008

StudentBounty.com The time taken for 50% recrystallization of cold worked Al is 100 hours at 500 K and 10 Q.29 600 K. Assuming Arrhenius kinetics, the activation energy for recrystallization in kJ mol-1 is

(A) 50

(C) 160

Group 2

(D) 320

0.30

Group 1 (P) Low cycle fatigue (Q) Creep (R) Impact toughness (S) Stretcher strain

(A) P-2, Q-4, R-1, S-5 (C) P-3, Q-4, R-1, S-2

Group 2 (1) Charpy test (2) Portevin-LeChatelier effect (3) Coffin-Manson equation (4) Larson-Miller parameter (5) Jominy test

(1) Differential initial acceleration

(2) Differential lateral movement

(4) Modification of surface tension

(3) Difference in density

(B) P-4, Q-1, R-3, S-2

(D) P-1, Q-3, R-4, S-2

(B) P-2, Q-1, R-5, S-3 (D) P-3, Q-1, R-4, S-5

Match the processes in Group 1 with the physical principles in Group 2 Q.31

(B) 80

Match the mechanical behaviour in Group 1 with the terms in Group 2

Group 1 (P) Flotation (Q) Jigging (R) Tabling (S) Heavy media separation

(A) P-4, Q-1, R-2, S-3 (C) P-2, Q-3, R-4, S-1

Q.32

 $\partial z =$ $\partial^2 z$ Which of the following is a solution for

(A)	z(x,t) =	$\left[A\sin x\right]$	$e^{-\lambda^2 l}$
(C)	z(x,t) = -	$\frac{A}{t}e^{-x^2/t}$	

dx^2				
(B)	z(x,t) =	Asin	(λx)	$e^{-\lambda^2 t}$
(D)	z(x,t) =	Bcos	$(\lambda x)^{-}$	\sqrt{t}

(2) Selective dissolution of metal

(1) Precipitation of metal in aqueous solution

Match the unit processes in Group 1 with the objectives in Group 2 Q.33

Group 1 (P) Leaching (Q) Cementation (R) Roasting (S) Converting

(A) P-2, Q-1, R-3, S-5 (C) P-3, Q-4, R-5, S-2

(3) Conversion of matte to metal (4) Conversion of sulphide to oxide (5) Separation of metal from slag

Group 2

(B) P-2, Q-1, R-4, S-3 (D) P-4, O-3, R-2, S-1

Match the following metals in Group 1 with their production methods in Group 2 Q.34

Group 1 (P) Titanium (Q) Nickel (R) Magnesium (S) Zinc

Group 2 (1) Mond's process (2) Pidgeon's process (3) Imperial smelting (4) Kroll's process (5) Cyanidation

(B) P-3 0 5 P 4 C

(A) P-5, Q-2, R-3, S-4

008				STELL AIN PAPER - MT
Q.35	Manganese recove	ery in steelmaking is a	ided by	LE TRO
	(P) oxidizing slag(Q) reducing slag(R) high temperatu(S) low temperatus(T) acidic slag	ure re	in anticipa sell, estado M (2):- Correctedado CO/Decention M Risk & general Massa	ounty.co
	(A) P, Q	(B) Q, S	(C) R, T	(D) Q, R
Q.36	A flotation plant concentrate. The c	treats 100 tons of concentrate has 25% C	chalcopyrite containing u. The percentage Cu in	2% Cu and produces 6 tons of the tailings is
	(A) 0.35	(B) 0.53	(C) 0.86	(D) 0.93
Q.37	One ton of liquid liquid slag conta equilibrium. The f	steel initially contain ining no sulphur. T inal sulphur content of	ning 0.08% S is brough the sulphur distribution f steel in wt.% is	t into equilibrium with 0.1 ton of ratio (%S) _{slag} /[%S] _{metal} is 30 at
	(A) 0.01	(B) 0.02	(C) 0.03	(D) 0.04
Q.38	Deoxidation of lic µm diameter take µm diameter to flo	quid steel with ferrosi 3000 minutes to float pat up through the sam	licon produces spherical up through a 2 m height e height, the time require	silica particles. The particles of 5 t of liquid steel. For particles of 50 ed in minutes is
	(A) 30	(B) 300	(C) 960	(D) 3000
2.59	Group 1 (P) Seagoing vesse (Q) Underground p (R) Electric tractio (S) Electric poles	el pipeline on tower	<u>Group 2</u> (1) Inorganic c (2) Sacrificial (3) Aluminiun (4) Impressed (5) Galvanizin	oating anode n paint g
	(A) P-2, Q-4, R-5, (C) P-1, Q-2, R-5,	S-3 S-4	(B) P-2, Q-3, R-5 (D) P-4, Q-3, R-5	5, S-1 1, S-2
Q.40	For a regular solut the system would b	ion A-B, $\Delta \overline{H}_B$ is 266 be at	0.5 J at $x_{\rm B} = 0.6$. The cri	tical point of the miscibility gap in
	(A) $x_B = 0.5$, T = 1 (C) $x_B = 0.5$, T = 5	000 K 00 K	(B) $x_B = 0.6$, T = (D) $x_B = 0.6$, T =	1000 K 2000 K
2.41	For Ni + $0.5O_2 =$ Ni/NiO in atm is	NiO, $\Delta G^0 = -250,00$	00 + 100T Joules. At 10	00 K, the p_{o_2} in equilibrium with
	(A) 2.13 x 10 ⁻¹⁶	(B) 8.54 x 10 ⁻¹⁶	(C) 1.46 x 10 ⁻⁸	(D) 2.92 x 10 ⁻⁸
2.42	The planar density	for (111) plane in a fo	c crystal is	
	(A) 0.68	(B) 0.74	(C) 0.85	(D) 0.91
12	Iridium has fcc str	ucture. Its density and	atomic weight are 22.4	00 kg m^{-3} and $192.2 \text{ respectively}$
2.43	The atomic radius	of iridium in nm is		

StudentBounty.com Q.44 Match the names in Group 1 with the invariant reactions in binary phase diagrams in Group

Group 1 Group 2 (P) Eutectic (1) S1 = S2 + S3 (O) Eutectoid (2) L = S1 + S2(R) Peritectoid (3) L1 = L2 + S(S) Monotectic (4) S1 + S2 = S3 (A) P-2, Q-1, R-3, S-4 (B) P-2, Q-1, R-4, S-3 (C) P-3, Q-4, R-2, S-1 (D) P-4, O-3, R-1, S-2

0.45 Match the properties in Group 1 with the units in Group 2

Group 1	Group 2
(P) Thermal conductivity	$\overline{(1) \text{ Jm}^{-2} \text{ s}^{-1} \text{ K}^{-1}}$
(Q) Heat transfer coefficient	(2) $J m^{-1} s^{-1} K^{-1}$
(R) Specific heat	$(3) \text{ m}^2 \text{ s}^{-1}$
(S) Diffusivity	(4) $J \text{ mol}^{-1} \text{ K}^{-1}$
(A) P-1, Q-2, R-4, S-3	(B) P-2, Q-3, R-1, S-4
(C) P-2, Q-1, R-4, S-3	(D) P-2, O-4, R-3, S-1

0.46 Match the heat treatment processes of steels in Group 1 with the microstructural features in Group 2

Group 1 (P) Quenching (O) Maraging (R) Tempering (S) Austempering

(A) P-2, Q-3, R-1, S-4 (C) P-2, Q-3, R-4, S-1

Group 2 (1) Bainite (2) Martensite (3) Intermetallic precipitates (4) Epsilon carbide

(B) P-1, Q-3, R-2, S-4 (D) P-3, Q-2, R-1, S-4

Match the nonferrous alloys in Group 1 with their applications in Group 2 0.47

Group 1 (P) Ti alloy (Q) Zr alloy (R) Ni alloy (S) Cu alloy (A) P-3, Q-1, R-4, S-2 (C) P-2, Q-1, R-3, S-4

Group 2 (1) Nuclear reactors (2) Bells (3) Dental implants (4) Gas Turbines (B) P-2, Q-3, R-4, S-1 (D) P-3, Q-4, R-1, S-2

Match the materials in Group 1 with their functional applications in Group 2 Q.48

Group 1 (P) Nb₃Sn (Q) GaAs (R) Fe-4%Si alloy (S) SiO₂ (A) P-3, Q-1, R-4, S-2 (C) P-3, Q-2, R-4, S-1

Group 2 (1) Dielectric (2) Soft magnet (3) Superconductor (4) Semiconductor (B) P-1, Q-4, R-2, S-3 (D) P-3, Q-4, R-2, S-1 0.49 An annealed hypoeutectoid steel has 10% of proeutectoid ferrite at room temperative carbon content of the steel is 0.8%. The carbon content in the steel in percent is

(A) 0.58 (B) 0.68 (C) 0.72

StudentBounty.com The melting point and latent heat of fusion of copper are 1356 K and 13 kJ mol⁻¹, respectively. Q.50 Assume that the specific heats of solid and liquid are same. The free energy change for the liquid solid transformation at 1250 K in kJ mol-1 is

(C) - 2

(D) - 1

Q.51 According to the Clausius-Clapeyron equation, the melting point of aluminium

(B) - 3

- (A) increases linearly with pressure
- (B) decreases linearly with pressure
- (C) increases exponentially with pressure
- (D) does not vary with pressure

Match the cast irons in Group 1 with the distinguishing microstructural features in Group 2 0.52

Group 1 (P) Grey cast iron (Q) Ductile cast iron (R) Malleable cast iron (S) White cast iron

(A) P-3, O-5, R-4, S-2 (C) P-2, Q-4, R-5, S-3

Group 2 (1) Temper graphite (2) Pearlite (3) Graphite flakes (4) Massive cementite (5) Nodular graphite

(B) P-1, Q-5, R-4, S-2 (D) P-3, Q-5, R-1, S-4

Q.53 Match the casting defects in Group 1 with causes given in Group 2

Group 1	Group 2
(P) Hot tear	(1) Insufficient melt super heat
(Q) Misrun	(2) High residual stresses
(R) Blister	(3) Improper venting
(S) Rat tail	(4) Expansion of sand
(A) P-1, Q-2, R-3, S-4	(B) P-3, O-4, R-1, S-2
(C) P-4, Q-3, R-2, S-1	(D) P-2, O-1, R-3, S-4

Q.54 The thickness of a plate is to be reduced from 60 to 30 mm by multipass rolling. The roll radius is 350 mm and coefficient of friction is 0.15. Assuming equal draft in each pass, the minimum number of passes required would be

(A) 2 (B) 4 (C) 5 (D) 6

Q.55 Match the particle morphologies in Group 1 with the powder production methods in Group 2

Group 1

- (P) Superalloy powder with rounded morphology (Q) Monosized spherical Ta powder (R) Fe powder with onion peel structure
- (S) Irregularly shaped W powder
- (A) P-2, Q-1, R-4, S-3
- (C) P-2, Q-4, R-1, S-3

Group 2 (1) Carbonyl process (2) Gas atomization (3) Oxide reduction (4) Rotating electrode process

(B) P-1, Q-4, R-3, S-2 (D) P-4, Q-1, R-2, S-3

(A) -4

						S
3	ANG AND					MA
56	One mole of monoatomic original volume. The wo	c ideal gas is reve rk done by the gas	rsibly and is in Joules is	othermally e	xpanded at 100	00 K to twice
	(A) 2430 (B) 2503	(C) 500	6	(D) 5763	
7	In the Ellingham diagram at temperature T2. M ar following are	m C \rightarrow CO line intended N are metals. T	rsects M→N 2 is greater	10 line at ten than T1. The	aperature T1 ar correct staten	and $N \rightarrow NO$ line ments among the
	 (P) carbon will reduce be (Q) carbon will reduce be (R) carbon will reduce be (S) carbon will reduce Me (T) carbon will reduce Ne 	oth MO and NO at oth MO and NO at oth MO and NO at O but not NO at te O but not MO at te	temperatures temperature temperatures emperatures emperatures	s T > T2 s between T1 s T < T1 between T1 a between T1 a	and T2 nd T2 nd T2	
	(A) P, S (B) Q, T	(C) R, S	5	(D) P, T	
3	Match the forms of corre	sion in Group 1 w	ith the typica	l examples ir	Group 2	
	<u>Group 1</u> (P) Filliform corrosion (Q) Crevice corrosion (R) Galvanic corrosion (S) Stress corrosion crack	king	<u>Group 2</u> (1) Austa (2) Nut b (3) Painta (4) Steel	enitic stainles olt with gask ed food cans studs in copp	s steel in chlor et per plate	ide environment
	(A) P-3, Q-2, R-4, S-1 (C) P-3 Q-4, R-2, S-1		(B) P-1, (D) P-2,	, Q-3, R-4, S- , Q-3, R-4, S-	2	
)	Given the following asse	rtion 'a' and the re	ason 'r', the	correct optio	n is	
	Assertion a: Phosphorou Reason r: Basic slag dec	s removal in steeln reases the activity	making is favor of P_2O_5 in the	oured by basi e slag	ic slag	
	 (A) Both a and r are true (B) Both a and r are false (C) a is true but r is false (D) Both a and r are true 	and r is the correct but r is not the cor	et reason for a	a for a		
)	Given the following asse	rtion 'a' and the re	ason 'r', the	correct optio	n is	
	Assertion a: In Bayer's p Reason r: Pressure increa	rocess high pressu uses the boiling poi	re is used to int of water	dissolve alun	nina from baux	ite
	 (A) Both a and r are corr (B) Both a and r are false (C) Both a and r are corr (D) a is true but r is false 	ect, but r is not the ect and r is the cor	e correct reas	on for a		
51	Match the alloys in Grou	p 1 with the main p	precipitates r	esponsible fo	r hardening in	Group 2
	Group 1 (P) Al-4.4%Cu-1.5%Mg (Q) Fe-18.0%Ni-8.5%Co (R) Al-1.0%Mg-0.6%Si- (S) Ni-15.0%Cr-2.7%Al-	0.6%Mn -3.5%Mo-0.2%Ti- 0.3%Cu-0.2%Cr 1.7%Ti-1.0%Fe	-0.1%Al	<u>Group 2</u> (1) Ni ₃ Mo (2) Mg ₂ Si (3) CuAl ₂ (4) TiAl ₃ (5) Ni ₃ Al		
	(A) P-3 O-5 R-2 S-4		(B) P-1	0-3, R-2, S-	4	did into he lite

ATRAN TO THE PARTY			MAIN PAPER - MT
and the second second	is in the second		192
Identify the attributes :	associated with disp	ersion hardened alloys	20
(P) dispersoids do not(Q) dispersoids are col(R) dispersoids impart(S) dispersoids improv	dissolve in the matri nerent with the matri creep resistance to t te the corrosion resis	ix even at high temperature ix he alloy stance of the alloy	" Ounty.co
(A) P, S	(B) Q, R	(C) Q, S	(D) P, R
In a gaseous mixture, $0.5O_2 = CO_2, \ \Delta G^0 = -$	CO, CO ₂ and O ₂ are -281,400 + 87.6T Jo	e in equilibrium at temper pules. The correct statemer	rature T. For the reaction CO
(P) The reaction will s(Q) The reaction will s(R) The reaction will s(S) The reaction will s	hift to left on increas hift to right on increa hift to left on increa hift to right on increa	sing T easing T sing pressure asing pressure	
(A) P, S	(B) P, Q	(C) Q, R	(D) R, S
The casting processes	that require expenda	ble moulds are	
(P) investment casting(Q) low-pressure casting(R) shell moulding(S) slush casting	ng		
(A) P, Q	(B) Q, R	(C) R, S	(D) P, R
Transport mechanisms	that do NOT contri	bute to densification durin	g sintering are
 (P) surface diffusion (Q) grain boundary dif (R) bulk diffusion (S) evaporation-condex (T) viscous flow 	fusion		
(A) P, Q	(B) Q, S	(C) Q, T	(D) P, S
The order of decreasin	g weldability among	the following steels is	
(P) Fe-0.6%C (Q) Fe-0.4%C (R) HSLA			
$(A) R \rightarrow Q \rightarrow P$	(B) $P \rightarrow Q \rightarrow R$	(C) $Q \rightarrow P \rightarrow R$	(D) $Q \rightarrow R \rightarrow P$
Match the welding pro	cesses in Group 1 w	ith the sources of heat in (Group 2
Group 1 (P) Ultrasonic welding (Q) Spot welding (R) SMAW (S) Thermit welding	A she and a set	Group 2 (1) Thermochemical (2) Electrical resistan (3) Friction (4) Electrical arc	ce
(A) P-3, Q-2, R-1, S-4		(B) P-4, Q-3, R-2, S-	-1
(C) P-1, Q-3, R-4, S-2		(D) P-3, Q-2, R-4, S	-1
A cup is to be made fi	rom a 2 mm thick n	netal sheet by deep-drawin	ng. The height of the cup is 75
	Identify the attributes a (P) dispersoids do not (Q) dispersoids impart (S) dispersoids improv (A) P, S In a gaseous mixture, $0.5O_2 = CO_2, \Delta G^0 = -$ (P) The reaction will s (Q) The reaction will s (Q) The reaction will s (Q) The reaction will s (A) P, S The casting processes (P) investment casting (Q) low-pressure castin (R) shell moulding (S) slush casting (A) P, Q Transport mechanisms (P) surface diffusion (Q) grain boundary diff (R) bulk diffusion (S) evaporation-conder (T) viscous flow (A) P, Q The order of decreasin (P) Fe-0.6%C (Q) Fe-0.4%C (R) HSLA (A) R->Q->P Match the welding proc <u>Group 1</u> (P) Ultrasonic welding (Q) Spot welding (A) P-3, Q-2, R-1, S-4 (C) P-1, Q-3, R-4, S-2 A cup is to be made fi	Identify the attributes associated with disp. (P) dispersoids do not dissolve in the matri (Q) dispersoids impart creep resistance to a (S) dispersoids improve the corrosion resis (A) P, S (B) Q, R In a gaseous mixture, CO, CO ₂ and O ₂ are $0.5O_2 = CO_2$, $\Delta G^\circ = -281,400 + 87.6T$ Joc (P) The reaction will shift to left on increat (Q) The reaction will shift to right on increat (P) The reaction will shift to right on increat (S) The reaction will shift to right on increat (G) low-pressure casting (R) shell moulding (S) slush casting (A) P, Q (B) Q, R Transport mechanisms that do NOT contrait (P) surface diffusion (Q) grain boundary diffusion (R) bulk diffusion (S) evaporation-condensation (T) viscous flow (A) P, Q (B) Q, S The order of decreasing weldability among (P) Fe-0.6%C (Q) Fe-0.4%C (R) HSLA (A) R- $Q \rightarrow P$ (B) P- $Q \rightarrow R$ Match the welding processes in Group 1 w Group 1 (P) Ultrasonic welding (Q) Spot welding (R) SMAW (S) Thermit welding (A) P-3, Q-2, R-1, S-4 (C) P-1, Q-3, R-4, S-2 A cup is to be made from a 2 mm thick n	Identify the attributes associated with dispersion hardened alloys(P) dispersoids impart creep resistance to the alloy(B) dispersoids impart creep resistance to the alloy(B) dispersoids impart creep resistance to the alloy(A) P, S(B) Q, R(C) Q, SIn a gascous mixture, CO, CO2 and O2 are in equilibrium at temper0.5O2 = CO2, $\Delta G^0 = -281,400 + 87.6T$ Joules. The correct statement(P) The reaction will shift to left on increasing T(P) The reaction will shift to right on increasing pressure(B) P, S(C) Q, RThe reaction will shift to right on increasing pressure(A) P, S(B) P, Q(C) Q, RThe reaction will shift to right on increasing pressure(A) P, S(B) P, Q(C) Q, RThe casting processes that require expendable moulds are(P) investment casting(P) such meta casting(P) such meta casting(P) such meta casting(P) such meta casting(P) such casting(P) autoc diffusion(P) our face diffusion(P) our face diffusion(P) are our of decreasing weldability among the following steels is(P) Fe-0.6%C(P) Fe-0.6%C(P) Fe-0.6%C(P) Fe-0.6%C(P) Outrasonic welding(P) Outrasonic welding(P) Outrasonic welding(P) Outrasonic welding(P) Outrasonic welding(P) Outrasonic welding(P) Thermit welding(P) The out

2008	(marine)			- Se R-				
Q.69	The defects that are 1	NOT observed in	extruded products are	uden				
	 (P) chevron cracking (Q) fold (R) piping (S) surface cracking (T) alligatoring 		0734	18				
	(A) P, Q	(B) R, T	(C) P, S	(D) Q, T				
2.70	Oil impregnated bron	nze bearings are n	nanufactured using					
	(A) pressure die casti(C) solid-state sinterin	ng ng	(B) centrifugal ((D) liquid phase	casting e sintering				
omr	non Data Question	IS						
Comr	non Data for Ouestion	is 71,72 and 73						
he d	iffusivities of carbon in	y-iron at 1173 an	d 1273 K are 5 00 x 10-12	and 1.04 + 10 ⁻¹ - 2 -1				
2.71	The activation energy	The activation energy for diffusion in kI mol ⁻¹ is						
	(A) 138	(B) 148	(C) 158	(D) 168				
2.72	The diffusivity of carl	bon in γ-iron at 13	$373 \text{ K in m}^2 \text{s}^{-1} \text{ is}$					
	(A) 3.4 x 10 ⁻¹¹	(B) 4.4 x 10 ⁻¹¹	(C) 5.4×10^{-11}	(D) 6.4×10^{-11}				
2.73	During the carburizati achieving a case depth	ion of a steel, a c h of <i>d</i> /2 at 1273 K	ase depth of d has been o , the time required in hou	btained in 40 hours at 1173 K. For				
	(A) 1	(B) 2	(C) 3	(D) 4				
mn	on Data for Question	s 74 and 75:						
copp com sinte	per alloy powder has an pacted in a cylindrical or red to a density of 7500	apparent density die at 300 MPa to 0 kg m ⁻³ . The theo	o of 3000 kg m ⁻³ and tap d o a green density of 6000 pretical density of the allo	ensity of 4500 kg m ⁻³ . The powder kg m ⁻³ . Subsequently, the compact y is 9000 kg m ⁻³ .				
2.74	If the powder is compr	ressed to 10 mm h	neight, the initial fill heigh	nt in mm is				
	(A) 12	(B) 15	(C) 20	(D) 25				
.75	The densification para	meter of the sinte	ered compact is					
	(A) 0.50	(B) 0.67	(C) 0.75	(D) 0.83				
nkea	Answer Question	s: 0.76 to 0.8	5 commutave menter					
atom	ent for Linked And		s carry two marks e	acn.				
nolu	ester-matrix accurate	Questions 76 a	ind 77:					
oduli	i of the matrix and the f	Tis unidirectional Tiber are 6.9 and 7	lly reinforced with 60 vo 2.4 GPa, respectively.	1.% of E-glass fibers. The elastic				
.76	The elastic modulus of	the composite pa	rallel to the fiber direction	n in GPa is				

8				SE NPAPER -N
2.77	If a load of 100 in kg is	kg is applied on the com	posite in the fiber direc	tion, the load fibers
	(A) 6	(B) 47	(C) 94	(D) 100 °C
tater	nent for Linked A	Answer Questions 78 an	d 79:	25
000 Irnac Iolec Compo kg n	kg of zinc concer e. Roasting conve ular weights: Zn = osition of air (in v nol of gas occupies	ntrate of composition 78 rts ZnS to ZnO, SO ₂ and = 65, S = 32, O ₂ = 32 ol.%) = 21% O ₂ and 79% s 22.4 m ³ at 273 K and 1	8% ZnS and 22% inert SO ₃ . The exit gas contain N_2 atm	is is roasted in a multiple hear ins 6 vol.% SO ₂ and 2 vol.% SO ₃ .
.78	Volume of the ex	kit gas (at 1 atm pressure	and 273 K) in m ³ is	
	(A) 2129	(B) 2252	(C) 2628	(D) 2923
.79	Stoichiometric a	mount of air used (at 1 at	m pressure and 273 K) i	n m ³ is
	(A) 1010	(B) 1394	(C) 1520	(D) 2020
taten	nent for Linked A	Answer Questions 80 an	d 81:	
ensit	y of Al = 2700 kg	m ⁻³ , atomic weight of Al	l = 27, density of Al ₂ O ₃ =	$= 3700 \text{ kg m}^{-3}$.
.80	The Pilling-Bedy	worth ratio for the oxidati	on of Al is	
	(A) 0.57	(B) 0.74	(C) 1.38	(D) 3.12
.81	The oxidation la	w that governs the high to	emperature oxidation of	Al is
	(A) parabolic	(B) linear	(C) logarithmic	(D) paralinear
aten	nent for Linked A	Answer Questions 82 an	d 83:	
the ffrac	diffraction patter tion peak appears	m of a fcc metal obtain at 20 of 58.4°. The lattice	ned using CuK_{α} radiati e parameter of the crysta	on (wavelength of 0.154 nm), a ll is 0.316 nm.
.82	The interplanar s	pacing in nm is		
	(A) 0.158	(B) 0.164	(C) 0.177	(D) 0.185
83	The Miller indice	es of the reflecting plane	are	
	(A) (111)	(B) (200)	(C) (220)	(D) (222)
aten	nent for Linked A	Answer Questions 84 an	d 85:	
lg ca eat ti lg are	sting with a volum ransfer coefficient e 1700 kg m ⁻³ and	ne to surface area ratio (at the metal-mould inter 923 K, respectively. Ass	casting modulus) of 0.1 face is 1.9 kJ m ⁻² K ⁻¹ s ⁻¹ ume ambient temperatur	m is made by gravity die casting. The density and melting point of to be 293 K.
.84	If the solidification	on time is 50 s, the latent	heat of fusion in kJ mol	⁻¹ is
	(A) 300	(B) 352	(C) 472	(D) 532
.85	In a spiral chann fluidity of the me	el of 10 mm diameter and elt in mm is	d with an entrance flow	velocity of 300 mm s ⁻¹ , the