Duration: Three Hours

Read the following instruction carefully

1. This question paper contains 24 pages including blank pages for rough work. Please check all pad discrepancy, if any.
2. Write your registration number, your, name and name of the examination centre at the specified locations on half of the Optical Response Sheet (ORS).
3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letter corresponding to your paper code.
4. All questions in this paper are of objective type.
5. Questions must be answered on the ORS by darkening the appropriate bubble marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. For each question darken the double of the correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
6. There are a total of 65 questions carrying 100 marks.
7. Questions Q. 1 - Q. 25 will carry 1-mark each, and questions Q. 26 - Q. 55 will carry 2-marks each.
8. Questions Q. 48- Q. 51 (2 pairs) are common data questions and question pairs (Q. 52, Q.53) and (Q.54, Q.55) are linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
9. Questions Q. 56 - Q. 65 belong to General Aptitude (GA). Questions Q. 56 - Q. 60 will carry 1-mark each, and questions Q. 61 - Q. 65 will carry 2-marks each. The GA questions will begin on a fresh page starting from page 13.
10. Un-attempted questions will carry zero marks.
11. Wrong answers will carry NEGATIVE marks. For Q. $1-\mathrm{Q} .25$ and Q. 56 - Q. $60,1 / 3$ mark will be deducted for each wrong answer. For Q. $26-\mathrm{Q} .51$ and Q. 61 - Q. $65,2 / 3$ mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53), and (Q.54, Q.55) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e., for Q .52 and $\mathrm{Q} .54,2 / 3$ mark will be deducted for each wrong answer. There is no negative marking for Q. 53 and Q. 55 .
12. Calculator (without data connectivity) is allowed in the examination hall.
13. Charts, graph sheets or tables are NOT allowed in the examination hall.
14. Rough work can be done on the question paper itself. Additionally, blank pages are provided at the end of the question paper for rough work.

Notations and Svmbols used

X / Y	$:$	$\{x \in X: x \notin Y\}$
N	$:$	The set of all natural numbers
Z	\vdots	The set of all integers
Z_{n}	\vdots	The set of all integers modulo n
Q	\vdots	The set of all rational numbers
R	\vdots	The set of all real numbers
R^{n}	$:$	The set of all n-tuples of real numbers
C	\vdots	The set of all complex numbers
$\mathrm{C}[0,1]$	$:$	The set of all complex valued continuous functions on $[0,1]$
$\mathrm{P}_{n}[a, b]$	The group of all 2×2 real invertible matrices under multiplication	
$\mathrm{GL}(2, \mathrm{R})$		

Q.1-Q. 25 Carry one mark each

1. Let E and F be any two events with $P(E \cup F)=0.8, P(E)=0.4$ and $P(E \mid F)=0.3$. Then $P(F)$ is
(a.) $\frac{3}{7}$
(b.) $\frac{4}{7}$
(c.) $\frac{3}{5}$
(d.) $\frac{2}{5}$
2. Let X have a binomial distribution with parameters n and p, where n is an integer greater than 1 and $0<p<1$. If $P(X=0)=$ $P(X=1)$, then the value of p is
(a.) $\frac{1}{n-1}$
(b.) $\frac{n}{n+1}$
(c.) $\frac{1}{n+1}$
(d.) $\frac{1}{n+1^{\frac{1}{n-1}}}$
3. Let $u(x, y)=2 x(1-y)$ for all real x and y. Then a function $v(x, y)$, so that $f(z)=u(x, y)+i v(x, y)$ is analytic, is
(a.) $x^{2}-\left(y-1^{2}\right)$
(b.) $(x-1)^{2}-y^{2}$
(c.) $(x-1)^{2}+y^{2}$
(d.) $x^{2}+(y-1)^{2}$

Let $f(z)$ be analytic on $D=\{z \in \mathbf{C}:|z-1|<1\}$ such that $f(1)=1$. If $f(z)=f\left(z^{2}\right)$ for all $z \in D$, then which one of the following statements is NOT nnumat)
(b.) $f\left(\frac{z}{2}\right)=\frac{=}{2}$
(c.) $f\left(z^{3}\right)=[f(z)]$
(d.) $f^{\prime}(1)=0$
5. The maximum number independent solutions of the equation $\frac{d^{4} y}{d x^{4}}=0$, with the cons $y(0)=1$, is
(a.) 4
(b.) 3
(c.) 2
(d.) 1
6. Which one of the following sets of functions is NOT orthogonal (with respect to the L^{2}-inner product) over the given interval?
(a.) $\{\sin n x: n \in \mathbf{N}\},-\pi<x<\pi$
(b.) $\{\cos n x: n \in \mathbf{N}\},-\pi<x<\pi$
(c.) $\left\{x^{2 n+\frac{1}{2}}: n \in \mathbf{N}\right\},-1<x<1$
(d.) $\left\{x^{2 n+\frac{1}{2}}: n \in \mathbf{N}\right\},-1<x<1$
7. If $f:[1,2] \rightarrow \mathbf{R}$ is a non-negative Riemann-integrable function such that $\int_{1}^{2} \frac{f(x)}{\sqrt{x}} d x=k \int_{1}^{2} f(x) d x \neq 0, \quad$ then $\quad k$ belongs to the interval
(a.) $\left[0, \frac{1}{3}\right]$
(b.) $\left(\frac{1}{3}, \frac{2}{3}\right]$
(c.) $\left(\frac{2}{3}, 1\right]$
(d.) $\left(1, \frac{4}{3}\right]$
8. The set $X=R$ with the metric
(c.) complete but not bounded
(d.) compact but not complete
9. Let

$$
f(x, y)= \begin{cases}\frac{x y}{\left(x^{2}+y^{2}\right)^{s i 2}}\left[1-\cos \left(x^{2}+y^{2}\right)\right], & (x, y) \neq(0,0) \\ k & ,(x, y)=(0,0)\end{cases}
$$

Then the value of k for which $f(x, y)$ is continuous at $(0,0)$ is
(a.) 0
(b.) $\frac{1}{2}$
(c.) 1
(d.) $\frac{3}{2}$
10. Let A and B be disjoint subsets of R and let m^{*} denote the Lebesgue outer measure on R. Consider the statements:

$$
P: m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)
$$

$Q:$ Both A and B are Lebesgue measurable R : One of A and B is Lebesgue measurable
Which one of the following is correct?
(a.) If P is true, then Q is true
(b.) If P is NOT true, then R is true
(c.) If R is true, then P is NOT true
(d.) If R is true, then P is true
11. Let $f: \mathbf{R} \rightarrow[0, \infty)$ be a Lebesgue measurable function and E be a Lebesgue measurable subset of \mathbf{R} such that $\int_{E} f d m=0$, where m is the Lebesgue measure on R. Then
(a.) $m(E)=0$
(b.) $\{x \in \mathbf{R}: f(x)=0\}=E$
(c.) $m(\{x \in E: f(x) \neq 0\})=0$
(d.) $m(\{x \in E: f(x)=0\})=0$
12. If the nullity of the matrix $\left[\begin{array}{ccc}k & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 4\end{array}\right]$ is

1 , then the value of k is か) 1
13.

If
an eigenv:
mmetric matrix has remaining eige
(a.) $\frac{1}{2 i}$
(b.) $-\frac{1}{2 i}$
(c.) 0
(d.) 1
14. For the linear programming problem

Minimize $z=x-y$,
subject to $2 x+3 y \leq 6$,

$$
\begin{aligned}
& 0 \leq x \leq 3, \\
& 0 \leq y \leq 3,
\end{aligned}
$$

the number of extreme points of its feasible region and the number of basic feasible solutions respectively, are
(a.) 3 and 3
(b.) 4 and 4
(c.) 3 and 5
(d.) 4 and 5
15. Which one of the following statements is correct?
(a.)If a Linear Programming Problem (LPP) is infeasible, then its dual is also infeasible
(b.)If an LPP is infeasible, then its dual always has unbounded solution
(c.) If an LPP has unbounded solution, then its dual also has unbounded solution
(d.)If an LPP has unbounded solution, then its dual is infeasible
16. Which one of the following groups is simple?
(a.) S_{3}
(b.) $G L(2, R)$
(c.) $Z_{2} \times Z_{2}$
(d.) A_{5}
17. Consider the algebraic extension $E=Q(\sqrt{2}, \sqrt{3}, \sqrt{5})$ of the field \mathbf{Q} of rational numbers. Then $[E: Q]$ the degree of E over \boldsymbol{Q}, is
18. The general solution of the partial differential equation $\frac{\partial^{2} z}{\partial x \partial y}=x+y$ is of the form
(a.) $\frac{1}{2} x y(x+y)+F(x)+G(y)$
(b.) $\frac{1}{2} x y(x-y)+F(x)+G(y)$
(c.) $\frac{1}{2} x y(x-y)+F(x) G(y)$
(d.) $\frac{1}{2} x y(x+y)+F(x) G(y)$
19. The numerical value obtained by applying the two-point trapezoidal rule to the integral $\int_{0}^{1} \frac{\ln (1+x)}{x} d x$ is
(a.) $\frac{1}{2}(\ln 2+1)$
(b.) $\frac{1}{2}$
(c.) $\frac{1}{2}(\ln 2-1)$
(d.) $\frac{1}{2} \ln 2$
20. Let $l_{k}(x), k=0,1, \ldots ., n$ denote the Lagrange's fundamental polynomials of degree n for the nodes $x_{0}, x_{1}, \ldots, x_{n}$. Then the value of $\sum_{k=0}^{n} l_{k}(x)$ is
(a.) 0
(b.) 1
(c.) $x^{n}+1$
(d.) $x^{n}-1$
21. Let X and Y be normed linear spaces and $\left\{T_{n}\right\}$ be a sequence of bounded linear operators from X to Y. Consider the statements:
$P:\left\{\left\|T_{n} x\right\|: n \in \mathbf{N}\right\}$ is bounded for each $x \in X$
$Q:\left\{\left\|T_{n}\right\|: n \in \mathbf{N}\right\}$ is bounded
(b.) $H \Gamma \quad S_{X} \quad n$ only one of X and Y is a Ba

(c.) If X is a $\mathrm{Ba}^{\text {a }}$

hen P implies
(d.) If Y is a Banach Q.
22. Let $X=G[0,1]$
with
$\|x\|_{1}=\int_{0}^{1}|x(t) d x, x \in C[0,1]|$
$\Omega=\left\{f \in X^{\prime}:\|f\|=1\right\}$, where X^{\prime} deno the dual space of X. Let $C(\Omega)$ be the linear space of continuous function on Ω with the norm $\|u\|=\sup _{s \in \Omega}|u(s)|, u \in C(\Omega)$. Then
(a.) X is linearly isometric with $C(\Omega)$
(b.) X is linearly isometric with a proper subspace of $C(\Omega)$
(c.) there does not exists a linear isometry form X into $C(\Omega)$
(d.) every linear isometry from X to $C(\Omega)$ is onto.
23. Let $X=R$ equipped with the topology generated by open intervals of the form (a, b) and sets of the form $(a, b) \cap \mathbf{Q}$.
Then which one of the following statements is correct?
(a.) X is regular
(b.) X is normal
(c.) $X \backslash \boldsymbol{Q}$ is dense in X
(d.) Q is dense in X
24. Let H, T and V denote the Hamiltonian, the kinetic energy and the potential energy respectively of a mechanical system at time t. If H contains t^{\prime} explicitly, then $\frac{\partial H}{\partial t}$ is equal to
(a.) $\frac{\partial T}{\partial t}+\frac{\partial V}{\partial t}$
(b.) $\frac{\partial T}{\partial t}-\frac{\partial V}{\partial t}$
$\partial V \quad \partial T$

The Euler's equation for the variational problem: Minimize $I[y(x)]=\int_{0}^{1}\left(2 x-x y-y^{\prime}\right) y^{\prime} d x$, is
(a.) $2 y^{\prime \prime}-y=2$
(b.) $2 y^{\prime \prime}+y=2$
(c.) $y^{\prime \prime}+2 y=0$
(d.) $2 y^{\prime \prime}-y=0$

Q.26-Q. 55 Carry two marks each

26. Let X have a binomial distribution with parameters n and $p, n=3$. For testing the hypothesis $H_{0}: p=\frac{2}{3}$ against $H_{1}: p=\frac{1}{3}$, let a test be: "Reject H_{0} if $X \geq 2$ and accept H_{0} if $X \leq 1 "$. Then the probabilities of Type I and Type II errors respectively are
(a.) $\frac{20}{27}$ and $\frac{20}{27}$
(b.) $\frac{7}{27}$ and $\frac{20}{27}$
(c.) $\frac{20}{27}$ and $\frac{7}{27}$
(d.) $\frac{7}{27}$ and $\frac{7}{27}$
27. Let $I=\int_{C} \frac{f(z)}{(Z-1)(Z-2)} d z$, where $f(z)=\sin \frac{\pi z}{2}+\cos \frac{\pi z}{2}$ and C is the curve $|z|=3$ oriented anti-clockwise. Then the value of I is
(a.) $4 \pi i$
(b.) 0
(c.) $-2 \pi i$
(d.) $-4 \pi i$
28. Let $\sum_{n=\infty}^{\infty} b_{n} z^{n}$ be the Laurent series expansion of the function 1
(b.) $b_{-3}=1$
(c.) $b_{-2}=0, b_{0}=$
(d.) $b_{0}=1, b_{2}=-\frac{1}{6}, b_{4}=$
29.

Under the transformation w region $D=\{z \in \mathbf{C}:|z|<1\}$ is transfo to
(a.) $\{z \in \mathbf{C}: 0<\arg z<\pi\}$
(b.) $\{z \in \mathbf{C}:-\pi<\arg z<0$
(c.) $\left\{z \in \mathbf{C}: 0<\arg z \frac{\pi}{2}\right.$ or $\left.\pi<\arg z \frac{3 \pi}{2}\right\}$
(d.) $\left\{z \in \mathbf{C}: \frac{\pi}{2}<\arg z<\pi\right.$ or $\left.\frac{3 \pi}{2}<\arg z<2 \pi\right\}$
30. Let $y(x)$ be the solution of the initial value problem
$y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0$,
$y(0)=y^{\prime}(0)=2, y^{\prime \prime}(0)=0$
Then the value of $y\left(\frac{\pi}{2}\right)$ is
(a.) $\frac{1}{5}\left(4 e^{\frac{\pi}{2}}-6\right)$
(b.) $\frac{1}{5}\left(6 e^{\frac{\pi}{2}}-4\right)$
(c.) $\frac{1}{5}\left(8 e^{\frac{\pi}{2}}-2\right)$
(d.) $\frac{1}{5}\left(8 e^{\frac{\pi}{2}}+2\right)$
31. Let $y(x)$ be the solution of the initial value problem
$x^{2} y^{\prime \prime}+x y^{\prime}+y=x$,
$y(1)=y^{\prime}(1)=1$
Then the value of $y\left(e^{\frac{\pi}{2}}\right)$ is
(b.) $\frac{1}{2}\left(1+e^{\frac{\pi}{2}}\right)$
(c.) $\frac{1}{2}+\frac{\pi}{4}$
(d.) $\frac{1}{2}-\frac{\pi}{4}$
32. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation defined by $T(x, y, z)=$ $(x+y, y+z, z-x)$. Then, an orthonormal basis for the range of T is
(a.) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right\}$
(b.) $\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\right\}$
(c.) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right)\right\}$
(d.) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)\right\}$
33. Let $T: P_{3}[0,1] \rightarrow P_{2}[0,1]$ be defined by $(T p)(x)=p^{\prime \prime}(x)+p^{\prime}(x)$. Then the matrix representation of T with respect to the bases $\left\{1, x, x^{2}, x^{3}\right\}$ and $\left\{1, x, x^{2}\right\}$ of $P_{3}[0,1]$ and $P_{2}[0,1]$ respectively is
(a.) $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 6 & 3\end{array}\right]$
(b.) $\left[\begin{array}{llll}0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3\end{array}\right]$
(c.) $\left[\begin{array}{llll}0 & 2 & 1 & 0 \\ 6 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0\end{array}\right]$
(d.) $\left\lceil\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 2\end{array}\right\rceil$
34.

Consider $\int_{x}\left\{u_{1}, u_{2}, u_{3}\right\}$ of \mathbf{R}^{3}; where

$$
u_{2}=(1,1,0)
$$

$u_{3}=(1,1,1)$. Let
basis of $\left\{u_{1}, u_{2}, u_{3}\right\}$
functional
$f(a, b, c)=a+b+c$,
$f=\alpha_{1} f_{1}+\alpha_{2} f_{2}+\alpha_{3} f_{3}$, then $\left(\alpha_{1}\right.$,
(a.) $(1,2,3)$
(b.) $(1,3,2)$
(c.) $(2,3,1)$
(d.) $(3,2,1)$
35. The following table gives the cost matrix of a transportation problem

4	5	6
3	2	2
1	1	2

The basic feasible solution given by $x_{11}=3, x_{13}=1, x_{23}=6, x_{31}=2, x_{32}=5$ is
(a.) degenerate and optimal
(b.) optimal but not degenerate
(c.) degenerate but not optimal
(d.)neither degenerate nor optimal
36. If z^{*} is the optimal value of the linear programming problem
Maximize $z=5 x_{1}+9 x_{2}+4 x_{3}$
subject to $x_{1}+x_{2}+x_{3}=5$

$$
\begin{aligned}
& 4 x_{1}+3 x_{2}+2 x_{3}=12 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

then
(a.) $0 \leq z^{*}<10$
(b.) $10 \leq z^{*}<20$
(c.) $20 \leq z^{*}<30$
(d.) $30 \leq z^{*}<40$
37. Let G_{1} be an abelian group of order 6 and $G_{2}=S_{3}$. For $j=1,2$, let P_{j} be the statement:
$" G_{j}$ has a unique subgroup of order 2 ". Thon
(c.) P_{1} holds but not P_{2}
(d.) P_{2} holds but not P_{1}
38. Let G be the group of all symmetries of the square. Then the number of conjugate classes in G is
(a.) 4
(b.) 5
(c.) 6
(d.) 7
39. Consider the polynomial ring $\mathbf{Q}[x]$. The ideal of $\mathbf{Q}[x]$ generated by $x^{2}-3$ is
(a.) maximal but not prime
(b.) prime but not maximal
(c.) both maximal and prime
(d.) neither maximal nor prime
40. Consider the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, t>0, \quad$ with $u(0, t)=u(\pi, t)=0, \quad u(x, 0)=\sin x \quad$ and $\frac{\partial u}{\partial t}=0$ at $t=0$. Then $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
(a.) 2
(b.) 1
(c.) 0
(d.) -1
41. Let $I=\int_{C} \frac{e^{y}}{x} d x+\left(e^{y} \ln x+x\right) d y$, where C is the positively oriented boundary of the region enclosed
by $y=1+x^{2}, y=2, x=\frac{1}{2}$. Then the value of I is
(a.) $\frac{1}{8}$
(b.) $\frac{5}{24}$
(c.) $\frac{7}{24}$
(d.) $\frac{3}{8}$
42. Let $\left\{f_{n}\right\}$ be a sequence of real valued
integrabio $\mathcal{S}_{\varkappa} \quad f:[a, b] \rightarrow \mathbf{R}$.
Consider the
$P_{1}:\left\{f_{n}\right\}$ converg
$P_{2}:\left\{f_{n}^{\prime}\right\}$ converges un
$P_{3}: \int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$
$P_{4}: f$ is differentiable
Then which one of the following
NOT be true
(a.) P_{1} implies P_{3}
(b.) P_{2} implies P_{1}
(c.) P_{2} implies P_{4}
(d.) P_{3} implies P_{1}
43. Let $f_{n}(x)=\frac{x^{n}}{1+x}$ and $g_{n}(x)=\frac{x^{n}}{1+n x}$ for $x \in \mathbf{N}$. Then on the interval $[0,1]$,
(a.) both $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converges uniformly
(b.) neither $\left\{f_{n}\right\}$ nor $\quad\left\{g_{n}\right\}$ converges
uniformly
(c.) $\left\{f_{n}\right\}$ converges uniformly but $\left\{g_{n}\right\}$ does not converge uniformly
(d.) $\left\{g_{n}\right\}$ converges uniformly but $\left\{f_{n}\right\}$ does not converges uniformly
44. Consider the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Then
(a.) both converge on $(-1,1]$
(b.) both converge on $[-1,1$)
(c.) exactly one of them converges on $(-1,1]$
(d.) none of them converges on $[-1,1$)
45. Let $X=\mathbf{N}$ be equipped with the topology generated by the basis consisting of sets $A_{n}=\{n, n+1, n+2, \ldots\},, n \in \mathbf{N}$. Then X is
(d.) Neither compact nor connected
46. Four weightless rods form a rhombus PQRS with smooth at the joints. Another weightless rod joins the midpoints E and F of $P Q$ and $P S$ respectively. The system is suspended from P and a weight $2 W$ is attached to R. If the angle between the rods $P Q$ and $P S$ is 2θ, then the thrust in the rod $E F$ is
(a.) $W \tan \theta$
(b.) $2 W \tan \theta$
(c.) $2 W \cot \theta$
(d.) $4 W \tan \theta$
47. For a continuous function $f(t), 0 \leq t \leq 1$, the integral equation $y(t)=f(t)+3 \int_{0}^{1} t s y(s) d s$ has
(a.) a unique solution if $\int_{0}^{1} s f(s) d s \neq 0$
(b.) no solution if $\int_{0}^{1} s f(s) d s=0$
(c.) infinitely many solution

$$
\int_{0}^{1} s f(s) d s=0
$$

(d.)infinitely many solutions if $\int_{0}^{1} s f(s) d s \neq 0$

Common Data Questions

 Common Data for Questions 48 and 49:Let X and Y be continuous random variables with the joint probability density function

$$
f(x, y)=\left\{\begin{array}{lc}
a e^{-2 y}, & 0<x<y<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

48. The value of a is
(a.) 4
(b.) 2
(c.) 1
(b.)
(c.) 2
(d.) 1

Common Data for Question

Let $X=\mathbf{N} \times \mathbf{Q}$ with the subspace topon
on \mathbf{R}^{2} and $P=\left\{\left(n, \frac{1}{n}\right): n \in \mathbf{N}\right\}$
50. In the space X,
(a.) P is closed but not open
(b.) P is open but not closed
(c.) P is both open and closed
(d.) P is neither open nor closed
51. The boundary of P in X is
(a.) an empty set
(b.) a singleton set
(c.) P^{\prime}
(d.) X

Linked Answer Questions Statement for Linked Answer Questions 52 and 53:

For a differentiable function $f(x)$, the integral $\int_{0}^{h} f(x) d x$ is approximated by the formulas $h\left[a_{0} f(0)+a_{1} f(h)\right]+h^{2}\left[b_{0} f^{\prime}(0)+b_{1} f^{\prime}(h)\right]$
which is exact for all polynomials of degree at most 3 .
52. The value of a_{1} and b_{1} respectively are
(a.) $\frac{1}{2}$ and $-\frac{1}{12}$
(b.) $-\frac{1}{12}$ and $\frac{1}{2}$
(c.) $\frac{1}{7}$ and $\frac{1}{17}$
(a.) $\frac{1}{2}$ and $\frac{1}{2}$
(b.) $\frac{1}{12}$ and $-\frac{1}{12}$
(c.) $\frac{1}{2}$ and $\frac{1}{12}$
(d.) $\frac{1}{2}$ and $-\frac{1}{12}$

Statement for Linked Answer Questions 54 and 55:

Let $X=C[0,1]$ with the inner product $\langle x, y\rangle=\int_{0}^{1} x(t) \overline{y(t)} d t, x, y \in C[0,1]$,
$X_{0}=\left\{x \in X: \int_{0}^{1} t^{2} x(t) d t=0\right\}$, and X_{0}^{\perp} be the orthogonal complement of X_{0}.
54. Which one of the following statements is correct?
(a.) Both X_{0} and X_{0}^{\perp} are complete
(b.) Neither X_{0} nor X_{0}^{\perp} is complete
(c.) X_{0} is complete but X_{0}^{\perp} is not complete
(d.) X_{0}^{\perp} is complete but X_{0} is not complete
55. Let $y(t)=t^{3}, t \in[0,1]$ and $x_{0} \in X_{0}^{\perp}$ be the best approximation of y. Then $x_{0}(t), t \in[0,1]$, is
(a.) $\frac{4}{5} t^{2}$
(b.) $\frac{5}{6} t^{2}$
(c.) $\frac{6}{7} t^{2}$
(d.) $\frac{7}{8} t^{2}$
56.

Whicri o closest in m

Circuitous

(a.) cyclic
(b.) indirect
(c.) confusing
(d.) crooked
57. The question below consists related words followed by four words. Select the pair that best expr the relation in the original pair.

Unemployed : Worker

(a.) fallow : land
(b.) unaware : sleeper
(c.) wit : jester
(d.)renovated : house
58. Choose the most appropriate word from the options given below to complete the following sentence:
If we manage to \qquad our natural resources, we would leave a better planet for our children.
(a.) uphold
(b.) restrain
(c.) cherish
(d.) conserve
59. Choose the most appropriate word from the options given below to complete the following sentence:
His rather causal remarks on politics
\qquad his lack of seriousness about

the subject.

(a.) masked
(b.) belied
(c.) betrayed
(d.) suppressed
60. 25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing either hockey nor football is :
(a.) 2
(b.) 17
(c.) 13
(d.) 3

Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully, there exist people in military establishments who think that chemical agents are useful tools for their cause.
Which of the following statements best sums up the meaning of the above passage:
(a.) Modern warfare has resulted in civil strife
(b.) Chemical agents are useful in modern warfare
(c.) Use of chemical agents in warfare would be undesirable
(d.) People in military establishments like to use chemical agents in war.
62. If $137+276=435$ how much is $731+$ 672 ?
(a.) 534
(b.) 1403
(c.) 1623
(d.) 1513
63. 5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall?
(a.) 20 days
(b.) 18 days
(c.) 16 days
(d.) 15 days
64. Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?
(a.) 50
(b.) 51
(c.) 52
(d.) 54
65. Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on $1^{\text {st }}$ January. The age

