Duration: Three Hours

Notations and Definitions used in the paper

R: The set of real numbers.

$$R^n = \{(x_1, x_2,, x_n) : x_i \in R, i = 1, 2,, n\}$$

C: The set of complex numbers.

 ϕ : The empty set.

For any subset E of X (or a topological space X).

 \overline{E} : The closure of E in X.

E°: The interior of E in X.

 E^{c} : The complement of E in X.

$$Z_n = \{0, 1, 2, \dots, n-1\}$$

 A^t : The transpose of a matrix A.

ONE MARKS QUESTIONS (1-20)

- 1. Consider R2 with the usual topology. Let $S = \{(x, y) \in \mathbb{R}^2 : x \text{ is an integer } \}$. Then S
 - (a.) Open but Not Closed
 - (b.) Both open and closed
 - (c.) Neither open nor closed
 - (d.) Closed but Not open
- Suppose $X = \{\alpha, \beta, \delta\}$. Let 2.

$$\mathfrak{I}_1 = \{ \phi, X, \{\alpha\}, \{\alpha, \beta\} \}$$

$$\mathfrak{I}_2 = \{ \phi, X, \{\alpha\}, \{\beta, \delta\} \}$$

Then

- $\mathfrak{I}_1 \cap \mathfrak{I}_2$ and (a.) Both topologies
- (b.) Neither $\mathfrak{I}_1 \cap \mathfrak{I}_2$ nor $\mathfrak{I}_1 \cup \mathfrak{I}_2$ is a topology
- (c.) $\mathfrak{I}_1 \cup \mathfrak{I}_2$ is a topology but $\mathfrak{I}_1 \cap \mathfrak{I}_2$ is Not a topology
- (d.) $\mathfrak{I}_1 \cap \mathfrak{I}_2$ is a topology but $\mathfrak{I}_1 \cup \mathfrak{I}_2$ is not a topology
- 3. For a positive integer n, let $f_n: R \to R$ be defined by

$$f(x) = \begin{cases} \frac{1}{4n+5}, & \text{If } 0 \le x \le n \end{cases}$$

(b.) Uniformly and also in L¹ n

- (c.) Point wise but Not uniformly
- (d.) In L¹ norm but Not point wise
- Student Bounts.com Let P₁ and P₂ be two projection operation 4. on a vector space. Then
 - (a.) P_1+P_2 is a projection if $P_1P_2=P_2P_1=0$
 - (b.) $P_1 P_2$ is a projection if $P_1 P_2 = P_2 P_1 = 0$
 - (c.) P_1+P_2 is a projection
 - $(d.)P_1-P_2$ is a projection
- 5. Consider the system of linear equations x + y + z = 3, x - y - z = 4, x - 5y + kz = 6

Then the value of k which this system has an infinite number of solutions is

- (a.) k = -5
- (b.)k = 0
- (c.)k = 1
- (d.)k = 3

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ x & y & z \end{bmatrix}$$
 and let

 $V = \{(x, y, z) \in \mathbb{R}^3 : \det(A) = 0\}$. Then the dimension of V equals

- (a.)0
- (b.)1
- (c.)2
- (d.)3

7. Let
$$S = \{0\} \cup \left\{ \frac{1}{4n+7} : n = 1, 2, \dots \right\}$$
. Then

the number of analytic functions which banish only on S is

- (a.) Infinite
- (b.)0
- (c.)1
- (d.)2
- It is given that $\sum_{n=0}^{\infty} a_n z^n$ converges at z =8. 3+i4. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ is

and

- 9. The value of α for which $G = \{\alpha, 1, 3, 9, 19, 27\}$ is a cyclic group under multiplication modulo 56 is
 - (a.)5
 - (b.)15
 - (c.)25
 - (d.)35
- 10. Consider Z_{24} as the additive group modulo 24. Then the number of elements of order 8 in the group Z_{24} is
 - (a.)2
 - (b.)2
 - (c.)3
 - (d.)4
- 11. Define $f: R^2 \to R$ $f(x,y) = \begin{cases} 1, & \text{if } xy = 0, \\ 2, & \text{otherwise} \end{cases}$

If $S = \{(x, y) : f \text{ is continuous at the point } (x, y)\}$, then

- (a.) S is open
- (b.) S is closed
- (c.) $S = \phi$
- (d.) S is closed
- 12. Consider the linear programming problem, $\max z = c_1 x_1 + c_2 x_2, c_1, c_2 > 0$

Subject to.
$$x_1 + x_2 \le 3$$
$$2x_1 + 3x_2 \le 4$$
$$x_1, x_2 \ge 0$$
.

Then,

- (a.) The primal has an optimal solution but the dual does Not have an optimal solution
- (b.)Both the primal and the dual have optimal solutions
- (c.) The dual has an optimal solution but the primal does not have an optimal solution
- (d.) Neither the primal nor the dual have optimal solutions
- 13. Let $f(x) = x^{10} + x 1, x \in R$ and let $x_k = k, k = 0, 1, 2,, 10$. Then the value of the divided difference $f[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}]$ is

14. Let X and distributed random variables has joint probability density function.

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & if \\ 0 & d \end{cases}$$

Then $P(Y > \max(X, -X)) =$

- (a.) $\frac{1}{2}$
- (b.) $\frac{1}{3}$
- (c.) $\frac{1}{4}$
- $(d.)\frac{1}{6}$

by

15. Let X_1, X_2, \dots be a sequence of independent and identically distributed chi-square random variables, each having 4 degree of freedom. Define

$$S_n = \sum_{i=1}^n X_1^2, \ n = 1, 2,,$$

If $\frac{S_n}{n} \xrightarrow{p} \mu$, as $n \to \infty$, then $\mu =$

- (a.) 8
- (b.)16
- (c.)24
- (d.)32
- 16. Let $\{E_n : n = 1, 2,\}$ be a decreasing sequence of Lebesgue measurable sets on R and let F be a Lebesgue measurable set on R such that $E_1 \cap F = \phi$. Suppose that F has Lebesgue measure 2 and the Lebesgue

measure of E_n equals $\frac{2n+2}{3n+1}$, n=1,2,...Then the Lebesgue measure of the set

 $\left(\bigcap_{n=1}^{\infty} E_n\right) \cup F$ equals

- (a.) $\frac{5}{3}$
- (b.)2
- (c.) $\frac{7}{3}$
- $(d.)\frac{8}{3}$

$$\int_{0}^{\frac{\pi}{8}} \left((y')^{2} + 2yy' - 16y^{2} \right) dx, \ y(0) = 0, \ y\left(\frac{\pi}{8}\right) = 1$$

occurs for the curve

(a.)
$$y = \sin(4x)$$

$$(b.) y = \sqrt{2} \sin(2x)$$

(c.)
$$y = 1 - \cos(4x)$$

(d.)
$$y = \frac{1 - \cos(8x)}{2}$$

18. Suppose $y_p(x) = x \cos(2x)$ is a particular solution of $y^n + \alpha y = -4 \sin(2x)$.

Then the constant α equals

- (a.) -4
- (b.)-2
- (c.)2
- (d.)4
- 19. If $F(s) = \tan^{-1}(s) + k$ is the Laplace transform of some function $f(t), t \ge 0$, then $k = -\infty$
 - (a.) $-\pi$
 - $(b.) \frac{\pi}{2}$
 - (c.)0
 - $(d.)\frac{\pi}{2}$
- 20. Let $S = \{0,1,1\}(1,0,1), (-1,2,1)\} \subseteq \mathbb{R}^3$. Suppose \mathbb{R}^3 is endowed with the standard inner product \langle , \rangle . Define

 $M = \{x \in R^3 : (x, y) = 0 \text{ for all } y \in S\}.$

Then the dimension of M equals

- (a.) 0
- (b.)1
- (c.)2
- (d.)3

TWO MARKS QUESTIONS (21-75)

21. Let X be an uncountable set and let $\mathfrak{I} = \{U \subseteq X : U = \phi \text{ or } U^c \text{ if finite } \}$

Then the topological space (X, \mathfrak{I})

- (a.) Is separable
- Ch Ma Handorff

22. Suppose (pological space. Let $\{S_n\}_{n\geq 1}$ be a se bsets of X.

hen

(a.) $\left(S_1 \cup S_2\right)^{\circ} = S_1^{\circ} \cup S_2$

$$(b.) \left(\bigcup_n S_n\right)^\circ = \bigcup_n S_n^\circ$$

(c.)
$$\overline{\bigcup_{n} S_{n}} = \bigcup_{n} \overline{S}_{n}$$

$$(d.) \, \overline{S_1 \cup S_2} = \overline{S_1} \cup \overline{S_2}$$

23. Let (X,d) be a metric space. Consider the metric ρ on X defined by

$$\rho(x,y) = \min\{\frac{1}{2}, d(x,y)\} | x, y \in X.$$

Suppose \mathfrak{I}_1 and \mathfrak{I}_2 are topologies on X defined by d and ρ , respectively. Then (a.) \mathfrak{I}_1 is a proper subset of \mathfrak{I}_2

- (b.) \mathfrak{I}_2 is a proper subset of \mathfrak{I}_1
- (c.) Neither $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$ nor $\mathfrak{I}_2 \subseteq \mathfrak{I}_1$
- $(\mathbf{d}.)\,\mathfrak{I}_1=\mathfrak{I}_2$
- 24. A basis of $V = \{(x, y, z, w) \in R^4 : x + y z = 0,$

$$v + z + w = 0, 2x + v - 3z - w = 0$$

(a.)
$$\{(1,1,-1,0),(0,1,1,1),\{(2,1,-3,1)\}$$

- (b.) $\{(1,-1,0,1)\}$
- (c.) $\{(1,0,1,-1)\}$
- (d.) $\{(1,-1,0,1),(1,0,1-1)\}$

25. Consider R³ with the standard inner product. Let

$$S = \{(1,1,1), (2,-1,2), (1,-2,1)\}.$$

For a subset W of R³, let L(W) denote the linear span of W in R³. Then an orthonormal set T with L(S) = L(T) is

(a.)
$$\left\{ \frac{1}{\sqrt{3}} (1,1,1), \frac{1}{\sqrt{6}} (1,-2,1) \right\}$$

(b.)
$$\{(1,0,0),(0,1,0),(0,0,1)\}$$

(c.)
$$\left\{ \frac{1}{\sqrt{3}} (1,1,1), \frac{1}{\sqrt{2}} (1,-1,0) \right\}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

 $(1,-1,0)^t$ respective eigen vectors

 $(1,1-2)^{t}$ and $(1,1,1)^{t}$. Then 6A equals

(a.)
$$\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

(b.)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(c.)
$$\begin{bmatrix} 1 & 5 & 3 \\ 5 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

$$(d.) \begin{bmatrix} -3 & 9 & 0 \\ 9 & -3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation 27. defined by

$$T((x, y, z)) = (x + y - z, x + y + z, y - z).$$

Then the matrix of the transformation T with respect to the ordered basis

$$B = \{(0,1,0), (0,0,1), (1,0,0)\} \text{ of } \mathbb{R}^3 \text{ is } 0$$

(a.)
$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

(b.)
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$(c.) \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc} 1 & -1 & 1 \\ \hline (d.) & 1 & 1 & 1 \\ 1 & -1 & 0 \\ \end{array}$$

 $Y(x) = (y_1(x), y_2(x))$ 28. and let

$$A = \begin{bmatrix} -3 & 1 \\ k & -1 \end{bmatrix}$$

Further, let S be the set of values of k for

29.

(a.) $\{k : k \le 3\}$ (b.) $\{k : k \le 3\}$ (c.) $\{k : k < -1\}$ (d.) $\{k : k < 3\}$ (e.) $\{k : k < 3\}$ (f.) $\{k : k < 3\}$ (g.) $\{a : k \le 3\}$ (he) $\{a : k \le 3\}$ satisfied by u is

- (a.) $u_{xy} + xu_{xx} = u_x$
- (b.) $u_{rv} + xu_{rr} = xu_{r}$
- (c.) $u_{xy} xu_{xx} = u_x$
- (d.) $u_{rv} xu_{rr} = xu_{r}$
- 30. Let C be the boundary of the triangle formed **b**y the points (1,0,0),(0,1,0),(0,0,1).

Then the value of the line integral $\oint -2ydx + (3x-4y^2)dy + (z^2+3y)dz$ is

- (a.)0
- (b.)1
- (c.)2
- (d.)4
- 31. Let X be a complete metric space and let Consider the $E \subset X$. following statements:
 - (S_1) E is compact
 - (S_2) E is closed and bounded
 - E is closed and totally bounded (S_3)
 - (S_4) Every sequence in E has a subsequence converging in E
 - $(a.) S_1$
 - $(b.)S_2$
 - (c.)S₃
 - $(d.)S_4$
- Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \sin(nx)$. 32.

Then the series

- (a.) Converges uniformly on R
- (b.) Converges point wise but not uniformly on R
- (c.) Converges in L1 norm to an integrable function on $[0,2\pi]$ but does not

33. Let f(z) be an analytic function. Then the value of $\int_0^{2\pi} f(e^{it}) \cos(t) dt$ equals

- (a.) 0
- (b.) $2\pi f(0)$
- (c.) $2\pi f'(0)$
- (d.) $\pi f'(0)$
- 34. Let G_1 and G_2 be the images of the disc $\{z \in C : |z+1| < 1\}$ under the

transformations $w = \frac{(1-i)z+2}{(1-i)z+2}$ and

- $w = \frac{(1+i)z+2}{(1+i)z+2}$ respectively. Then
- (a.) $G_1 = \{w \in C : Im(w) < 0\}$ and $G_2 = \{w \in C : Im(w) ? 0\}$
- (b.) $G_1 = \{w \in C : Im(w) > 0\}$ and $G_2 = \{w \in C : Im(w) < 0\}$
- $\begin{aligned} \text{(c.)} \ G_1 &= \{ w \in C : Im(w) > 2 \} \ \text{and} \ G_2 &= \{ w \\ &\in C : Im(w) < 2 \} \end{aligned}$
- $\begin{aligned} (d.)\,G_1 &= \{ w \in C : Im(w) < 2 \} \text{ and } G_2 &= \{ w \\ &\in C : Im(w) > 2 \} \end{aligned}$
- 35. Let $f(z) = 2z^2 1$. Then the maximum value of |f(z)| on the unit disc $D = \{z \in C : |z| \le 1\}$ equals
 - (a.) 1
 - (b.)2
 - (c.)3
 - (d.)4
- 36. Let $f(z) = \frac{1}{z^2 3z + 2}$

Then the coefficient of $\frac{1}{z^3}$ in the Laurent

series expansion of f(z) and is

- (a.)0
- (b.)1
- (c.)3 (d.)5
- 37. Let $f: C \to C$ be an arbitrary analytic function satisfying f(0) = 0 and f(1) = 2. Then
 - f(1) = 2. Then
 - (a.) there exists a sequence $\{z_n\}$ such that $|z_n|$ and $|f(z_n)| > n$

- (d.) there $\{z_n\}$ such that
- 38. Define f:C
 - $f(z) = \begin{cases} 0, & if \text{ Re}(z) \\ z, & oh \end{cases}$

Then the set of points where is

- (a.) $\{z : Re(z) \neq 0 \text{ and } Im(z) \neq 0 \}$
- (b.) $\{z : \text{Re}(z) \neq 0\}$
- (c.) $\{z : \text{Re } (z) \neq 0 \text{ or } \text{Im}(z) \neq 0\}$
- (d.) $\{z : Im(z) \neq 0\}$
- 39. Let U(n) be the set of all positive integers less than n and relatively prime to n. Then U(n) is a ground under multiplication modulo n. For n = 248, the number of elements in U(n) is
 - (a.) 60
 - (b.)120
 - (c.) 180
 - (d.)240
- 40. Let R(x) by the polynomial ring in x with real coefficients and let $I = (x^2 + 1)$ be the ideal generated by the polynomial $x^2 + 1$ in R[x]. Then
 - (a.) I is a maximal ideal
 - (b.) I is a prime ideal but NOT a maximal ideal
 - (c.) I is NOT a prime ideal
 - (d.)R[x]/I has zero divisors
- 41. Consider Z_5 and Z_{20} as ring modulo 5 and 20, respectively. Then the number of homomorphism $\varphi: Z5 \to Z_{20}$ is
 - (a.) 1
 - (b.)2
 - (c.)4
 - (d.)5
- 42. Let Q be the field of rational number and consider Z_2 as a field modulo 2. Let $f(x) = x_3 9x_2 + 9x + 3$.

Then f(x) is

- (a.)irreducible over Q but reducible over Z_2
- (b.) irreducible over both Q and Z₂
- (c.) reducible over Q but irreducible over Z_2
- (d.) reducible over both Q and \mathbb{Z}_2
- 43. Consider Z_5 as field modulo 5 and let $f(x) = x^5 + 4x^4 + 4x^3 + 4x^2 + x + 1$

(c.) 2 and 2

(d.) 1 and 2

44. Consider the Hilbert space
$$\sum_{i=1}^{\infty} x_i^2$$

$$l^{2} = \left\{ x = \left\{ x_{n} \right\} : x_{n} \in R, \sum_{n=1}^{\infty} x_{n}^{2} < \infty \right\}$$

Let
$$E = \left\{ \left\{ x_n \right\} : |x_n| \le \frac{1}{n} \text{ for all } n \right\} \text{ be } a$$

subset of l^2 . Then

(a.)
$$E^{\circ} = \left\{ x : |x_n| < \frac{1}{n} \text{ for all } n \right\}$$

(b.)
$$E^0 = E$$

(c.)
$$E^0 = \left\{ x : |x_n| < \frac{1}{n} \text{ for all but finitely many } n \right\}$$

(d.)
$$E^0 = \phi$$

- Let X and Y be normed liner spaces and 45. the $T: X \to Y$ be a linear map. Then T is continuous if
 - (a.) Y is finite dimensional
 - (b.) X is finite dimensional
 - (c.) T is one to one
 - (d.) T is onto
- Let X be a normed linear space and let E₁, 46. $E_2 \subset X$. Define

$$E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}.$$

Then $E_1 + E_2$ is

- (a.) open if E_1 or E_2 is open
- (b.) NOT open unless both E_1 and E_2 are open
- (c.) closed if E_1 or E_2 is closed
- (d.) closed if both E_1 and E_2 are closed
- For each $a \in R$, consider the linear 47. programming problem

Max.
$$z = x_1 + 2x_2 + 3x_3 + 4x_4$$

subject to

$$ax_1 + 2x_2 \le 1$$

$$x_1 + ax_2 + 3x_4 \le 2$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Let $S \nmid a \in R$: the given LP problem has a basic feasible solution. Then

(a.)
$$S = \phi$$

$$(b.)S = R$$

(c.)
$$S = (0, \infty)$$

(d.)
$$S = (-\infty, 0)$$

48. Consider the linear programming problem

$$+5x_3 \le 3$$

Then the dual of this

- (a.) has a feasible solution have a basic feasible so.
- (b.) has a basic feasible solution
- Student Bounty.com infinite (c.) has solutions
- (d.) has no feasible solution

Consider a transportation problem with two warehouses and two markets. The warehouse capacities are $a_1 = 2$ and $a_2 = 4$ and the market demands are $b_1 = 3$ and b_2 = 3. let x_{ii} be the quantity shipped from warehouse i to market j and c_{ij} be the corresponding unit cost. Suppose that $c_{11} =$ 1, $c_{21} = 1$ and $c_{22} = 2$. Then $(x_{11}, x_{12}, x_{21}, x_{2$ $(x_{22}) = (2, 0, 1, 3)$ is optimal for every

- (a.) $x_{12} \in [1, 2]$
- $(b.)x_{12} \in [0, 3]$
- $(c.)x_{12} \in [1, 3]$
- $(d.)x_{12} \in [2, 4]$
- **5**0. The smallest degree of the polynomial that interpolates the data

interportates the tauta							
	X	-2	-1	0	1	2	3
	f(x)	-58	-21	-12	-13	-6	27

is

49.

- (a.)3
- (b.)4
- (c.)5
- (d.)6
- 51. Suppose that x_0 is sufficiently close to 3. Which of the following iterations $x_{n+1} =$ $g(x_n)$ will converge to the fixed point x =3?

(a.)
$$x_{n+1} = -16 + 6x_n + \frac{3}{x_n}$$

(b.)
$$x_{n+1} = \sqrt{3 + 2x_n}$$

(c.)
$$x_{n+1} = \frac{3}{x_n - 2}$$

(d.)
$$x_{n+1} = \frac{x_n^2 - 2}{2}$$

Consider 52. the quadrature formula.

$$\int_{-1}^{1} |x| f(x) dx \approx \frac{1}{2} \left[f(x_0) + f(x_1) \right]$$

(a.) 1

(b.)2

(c.)3

(d.)4

53. Let A. B and C be three events such that

P(A) = 0.4, P(B) = 0.5, $P(A \cup B) = 0.6$.

 $P(C) = 0.+ \text{ and } P(A \cup B \cup C^{c}) = 0.1$

Then $P(A \cup B|C) =$

(a.) $\frac{1}{2}$

 $(d.)\frac{1}{5}$

54. Consider two identical boxes B_1 and B_2 , where the box B (i = 1, 2) contains i + 2 red and 5-i-1 white balls. A fair die is cast. Let the number of dots shown on the top face of the die be N. If N is even or 5, then two balls are down with replacement from the box B₁, otherwise, two balls are drawn with replacement from the box B₂. The probability that the two drawn balls are of different colours is

(a.) $\frac{7}{25}$

 $(b.)\frac{9}{25}$

(c.) $\frac{12}{25}$

 $(d.)\frac{16}{25}$

55. Let X_1 , X2... be a sequence of independent and identically distributed random variable with

$$P(X_1 = -1) = P(X_1 = 1) = \frac{1}{2}$$

Suppose for the standard normal random variable Z, P($-0.1 < Z \le 0.1$) = 0.08.

If $S_n = \sum_{i=1}^{n^2} X_i$, then $\lim_{n \to \infty} P\left(S_n > \frac{n}{10}\right) =$

(a.) 0.42

(b.)0.46

(c.)0.50

Then $E(T^2\overline{X}^2)$

(a.)3

(b.)3.6

(c.)4.8

(d.)5.2

Student Bounty.com Let $x_1 = 3.5$, $x_2 = 7.5$ and x_3 57. observed values of random sample three from a population having unit distribution over the interval $(\theta, \theta + 5)$ where $\theta \in (0, \infty)$ is unknown and is to be estimated. Then which of the following is NOT a maximum likelihood estimate of θ ?

(a.)2.4(b.)2.7

(c.)3.0

(d.)3.3

The value of $\int_0^\infty \int_{1/y}^\infty x^4 e^{-x^3 y} dx dy$ equals 58.

(d.)1

 $\lim_{n\to\infty} \left[(n+1) \int_0^1 x^n \ln(1+x) dx \right] =$ 59.

> (a.)0 (b.) In 2

(c.) In 3 $(d.)\infty$

60. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^4, & \text{if } x \text{ is rational,} \\ 2x^2 - 1, & \text{if } x \text{ is irrational} \end{cases}$$

Let S be the set of points where f is continuous. Then

(a.) $S = \{1\}$

 $(b.)S = \{-1\}$

 $(c.) S = \{-1, 1\}$

 $(d.)S = \phi$

For a positive real number p, let $(f_n: n = 1,$ 61. 2,....) be a sequence of functions defined on [0, 1] by 1

Let $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in [0, 1]$. Then, on

[0, 1]

(a.) f is Riemann integrable

 $\int_{1}^{1} f(x) dx$ (b.) the improper integral converges for $p \ge 1$

 $\int_{1}^{1} f(x) dx$ integral (c.) the improper converges for p < 1

 $(d.)f_n$ converges uniformly

Which of the following inequality is NOT 62. true for $x \in \left(\frac{1}{4}, \frac{3}{4}\right)$

(a.)
$$e^{-x} > \sum_{j=0}^{2} \frac{\left(-x\right)^{j}}{j!}$$

(b.)
$$e^{-x} < \sum_{j=0}^{3} \frac{\left(-x\right)^{j}}{j!}$$

(c.)
$$e^{-x} > \sum_{j=0}^{4} \frac{\left(-x\right)^{j}}{j!}$$

(d.)
$$e^{-x} > \sum_{j=0}^{5} \frac{(-x)^{j}}{j!}$$

Let u(x, y) be the solution of the Cauchy 63. problem

$$xu_x + u_y = 1, u(x, 0) = 2 \ln(x), x > 1$$

Then u(e, 1) =

(a.)-1

(b.)0

(c.)1

(d.)e

64. Suppose

$$y(x) = \lambda \int_0^{2\pi} y(t) \sin(x+t) dt, x \in [0, 2\pi]$$

has eigenvalue $\lambda = \frac{1}{\pi}$ and $\lambda = -\frac{1}{\pi}$, with

corresponding eigenfunctions and

$$y_1(x) = \sin(x) + \cos(x)$$
 ar

 $y_2(x) = \sin(x) - \cos(x)$, respectively.

Then the integral equation

$$y(x) = f(x) + \frac{1}{\pi} \int_0^{2\pi} y(t) \sin(x+t) dt, x \in [0, 2\pi]$$

has a solution when f(x)=

(a.) 1

(L) ~~~(...)

 $u_{x}(0, y) = u_{x}$

Student Bounty.com $u_{v}(x,-1)=0, u_{v}(x,-1)$

The problem admits so

(a.) $\alpha = 0$, $\beta = 1$

(b.)
$$\alpha = -1, \beta = \frac{\pi}{2}$$

(c.)
$$\alpha = 1, \beta = \frac{\pi}{2}$$

(d.)
$$\alpha = 1$$
, $\beta = -\pi$

The functional 66.

$$\int_0^1 (1+x)(y,y)^2 dx, y(0) = 0, y(1) = 1,$$

possesses

(a.) strong maxima

(b.) strong minima

(c.) weak maxima but NOT a strong maxima

(d.) weak minima but NOT a strong minima

The value of α for which the integral 67. equation $u(x) = \alpha \int_0^1 e^{x-t} u(t) dt$, has a non-

trivial solution is

(a.)-2

(b.)-1

(c.)1

(d.)2

Let $P_n(x)$ be the Legendre polynomial of 68. degree n and let

$$P_{m+1}(0) = -\frac{m}{m+1}P_m(0), m = 1, 2, \dots$$

If
$$P_n(0) = -\frac{5}{16}$$
, then $\int_{-1}^1 P_n^2(x) dx =$

(a.) $\frac{2}{13}$

(b.) $\frac{2}{9}$

(c.) $\frac{5}{16}$

 $(d.)\frac{2}{5}$

69. For which of the following pair of functions $y_1(x)$ and $y_2(x)$, continuous

 $y_2(x)$ give two linearly independent solution of

$$y''+p(x)y'+q(x)y=0, x \in [-1,1]$$

(a.)
$$\frac{2}{13}$$

$$(b.)\frac{2}{9}$$

(c.)
$$\frac{5}{16}$$

$$(d.)\frac{2}{5}$$

Let $J_0(.)$ and $J_1(.)$ be the Bessel 70. functions of the first kind of orders zero and one, respectively.

If
$$\pounds(J_0(t)) = \frac{1}{\sqrt{s^2 + 1}}$$
, then $\pounds(J_1(t)) =$

(a.)
$$\frac{s}{\sqrt{s^2+1}}$$

(b.)
$$\frac{1}{\sqrt{s^2+1}}-1$$

(c.)
$$1 - \frac{s}{\sqrt{s^2 + 1}}$$

(d.)
$$\frac{s}{\sqrt{s^2+1}}-1$$

COMMON DATA QUESTIONS

Common Data for Questions 71, 72, 73:

Let $P[0, 1] = \{p : p \text{ is a polynomial function on } [0, 1] \}$ 1]}. For $p \in P[0, 1]$ define

$$||P|| = \sup \{|p(x)| : 0 \le x \le 1\}$$

Consider the map $T:P[0,1] \rightarrow P[0,1]$ defined by

$$(Tp)(x) = \frac{d}{dx}(p(x)).$$

The linear map T is 71.

- (a.) one to one and onto
- (b.) one to one but NOT onto
- (c.) onto but NOT one to one
- (d.) neither one to one nor onto
- 72. The normal linear space P[0, 1] is
 - (a.) a finite dimensional normed linear space which is NOT a Banach space

73. The map

- (a.) closed an
- (b.) neither cont.
- (c.) continuous but
- (d.) closed but NOT co

Common Data for Question

Student Bounty.com Let X and Y be jointly distributed variables such that the conditional distribu Y, given X = x, is uniform on the interval (x

$$x + 1$$
). Suppose E(X) = 1 and Var (X) = $\frac{5}{3}$.

74. The mean of the random variable Y is

- (a.) $\frac{1}{2}$
- (b.)1
- (c.)

The variance of the random variable Y is

- (c.) 1
- (d.)2

WO MARKS QUESTIONS (76-85

Linked Answer Questions: 76-85 carry two marks each

Statement for Lined Answer Ouestions 76 and

Suppose the equation $x^2y^n - xy' + (1+x^2)y = 0$

has a solution of the form $y = x^r \sum_{n=0}^{\infty} c_n x^n$, $c_0 \neq 0$

76. The indicial equation for r is

- (a.) $r^2 1 = 0$
- (b.) $(r-1)^2 = 0$ (c.) $(r+1)^2 = 0$

(b.)
$$n^2 c_n + c_{n-2} = 0$$

(c.)
$$c_n - n^2 c_{n-2} = 0$$

(d.)
$$c_n + n^2 c_{n-2} = 0$$

Statement for Linked Answer Question 78 and

A particle of mass m slides down without friction along a curve $z = 1 + \frac{x^2}{2}$ in the xz-plane under the action of constant gravity. Suppose the z-axis points vertically upwards. Let \dot{x} and \ddot{x} denote $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$, respectively.

(a.)
$$\frac{1}{2}m\dot{x}^2(1+x^2)-mg\left(1+\frac{x^2}{2}\right)$$

(b.)
$$\frac{1}{2}m\dot{x}^2(1+x^2)+mg\left(1+\frac{x^2}{2}\right)$$

(c.)
$$\frac{1}{2}mx^2\dot{x}^2 - mg\left(1 + \frac{x^2}{2}\right)$$

(d.)
$$\frac{1}{2}m\dot{x}^2(1+x^2)-mg\left(1+\frac{x^2}{2}\right)$$

The Lagrangian equation of motion is 79.

(a.)
$$\ddot{x}(1+x^2) = -x(g+\dot{x}^2)$$

(b.)
$$\ddot{x}(1+x^2) = x(g+\dot{x}^2)$$

(c.)
$$\ddot{x} = -gx$$

(c.)
$$x = -gx$$

(d.) $\ddot{x}(1-x^2) = x(g+\dot{x}^2)$

Statements for Linked Answer Questions 80 and 81:

Let u(x, t) be the solution of the one dimensional wave equation

$$u_{tt} - 4u_{xx} = 0, -\infty < x < \infty, t > 0$$

$$u(x,0) = \begin{cases} 16 - x^2, & |x| \le 4, \\ 0, & otherwise, \end{cases}$$
 and
$$u_t(x,0) = \begin{cases} 1, & |x| \le 2, \\ 0, & otherwise, \end{cases}$$

$$u_t(x,0) = \begin{cases} 1, & |x| \le 2, \\ 0, & otherwise \end{cases}$$

(b.)
$$\frac{1}{2} \left[32 - + 2t \right]^2 + t$$

(c.)
$$\frac{1}{2} \left[32 - (2 - 2\iota) \right]$$

(d.)
$$\frac{1}{2} \left[16 - \left(2 - 2t \right)^2 \right] + \frac{1}{2} \left[16 - \left(2 - 2t \right)^2 \right]$$

81. The value of $u_t(2, 2)$

- (a.) equals -15
- (b.) equals -16
- (c.) equals 0
- (d.) does NOT exist

Statement for Linked Answer Questions 82 and 83:

Suppose $E = \{(x, y) : xy \neq 0\}$. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0, & \text{if } xy = 0, \\ y \sin\left(\frac{1}{x}\right) + x \sin\left(\frac{1}{y}\right), & \text{otherwise.} \end{cases}$$

Let S_1 be the set of points in \mathbb{R}^2 where f_x exists and S_2 be the set of the points in R^2 where f_v exists. Also, let E_1 be the set of points where f_x is continuous and E_2 be the set of points where f_v is continuous.

82. S_1 and S_2 are given by

(a.)
$$S_1 = E \cup \{x, y\} : y = 0\}, S_2 = E \cup \{(x, y) : x = 0\}$$

(b.)
$$S_1 = E \cup \{x, y\} : y = 0\}, S_2 = E \cup \{(x, y) : y = 0\}$$

(c.)
$$S_1 = S_2 = R^2$$

(d.)
$$S_1 = S_2 = E \cup \{(0, 0)\}$$

83. E_1 and E_2 are given by

(a.)
$$E_1 = E_2 = S_1 \cap S_2$$

(b.)
$$E_1 = E_2 = S_1 \cap S_2 / \{(0,0)\}$$

(c.)
$$E_1 = S_1, E_2 = S_2$$

$$(d.)E_1 = S_2, E_2 = S_1$$

Statement for Linked Answer Questions 84 and 85:

Let
$$A \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$

and let $\lambda_1 \ge \lambda_2 \ge \lambda_3$ be the eigenvalue of A.

(b.)(8,4,3)

(c.)(9,3,3)

(d.)(7,5,3)

The matrix 85. P

such that Student Bounty.com

$$P^{t}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$
 is

(a.)
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

(b.)
$$\begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{vmatrix}$$

(c.)
$$\begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

(d.)
$$\begin{vmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}$$