Q. No. 1 - 25 Carry One Mark Each

1. If $x=\sqrt{-1}$, then the value of x^{x} is:
(A) $\mathrm{e}^{-\pi / 2}$
(B) $e^{\pi / 2}$
(C) x
(D) 1

Answer:- (A)
Exp:- Given, $x=\sqrt{-1} ; x^{x}=(\sqrt{-1})^{\sqrt{-1}}=i^{i}$
We know that $e^{i \theta}=\cos \theta+i \sin \theta \Rightarrow e^{i \frac{\pi}{2}}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i$
$\therefore(i)^{i}=\left(\mathrm{e}^{\mathrm{i} \pi / 2}\right)^{i}=\mathrm{e}^{-\pi / 2}$
2. With initial condition $\mathrm{x}(1)=0.5$, the solution of the differential equation, $\mathrm{t} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{x}=\mathrm{t}$ is
(A) $\mathrm{x}=\mathrm{t}-\frac{1}{2}$
(B) $\mathrm{x}=\mathrm{t}^{2}-\frac{1}{2}$
(C) $\mathrm{x}=\frac{\mathrm{t}^{2}}{2}$
(D) $x=\frac{t}{2}$

Answer:- (D)
Exp:- Given DE is $\mathrm{t} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{x}=\mathrm{t} \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\mathrm{x}}{\mathrm{t}}=1$
IF $=\mathrm{e}^{\int \frac{1}{\mathrm{t}} \mathrm{dt}}=\mathrm{e}^{\text {logt }}=\mathrm{t}$; solution is $\mathrm{x}(\mathrm{IF})=\int(\mathrm{IF}) \mathrm{tdt}$
$\mathrm{xt}=\int \mathrm{t} \cdot \mathrm{tdt} \Rightarrow \mathrm{xt}=\frac{\mathrm{t}^{2}}{2}+\mathrm{c}_{\text {; }}$ Given that $\mathrm{x}(1)=0.5 \Rightarrow 0.5=\frac{1}{2}+\mathrm{c} \Rightarrow \mathrm{c}=0$
\therefore the required solution is $\mathrm{xt}=\frac{\mathrm{t}^{2}}{2} \Rightarrow \mathrm{x}=\frac{\mathrm{t}}{2}$
3. Two independent random variables X and Y are uniformly distributed in the interval $[-1,1]$. The probability that $\max \left[X_{I} Y\right]$ is les than $1 / 2$ is:
(A) $3 / 4$
(B) $9 / 16$
(C) $1 / 4$
(D) $2 / 3$

Answer:- (B)
Exp:- Un iform distribution X, Y on $[-1,1] ; f(x)=f(y)=\frac{1}{2}$

$$
\begin{aligned}
\mathrm{P}\left(\max (\mathrm{x}, \mathrm{y}) \leq \frac{1}{2}\right) & =\mathrm{P}\left(\mathrm{X}=\frac{1}{2},-1 \leq \mathrm{Y} \leq \frac{1}{2}\right) \cdot \mathrm{P}\left(-1 \leq \mathrm{X} \leq \frac{1}{2}, \mathrm{Y}=\frac{1}{2}\right) \\
& =\int_{-1}^{1 / 2} \frac{1}{2} \mathrm{dx} \int_{-1}^{1 / 2} \frac{1}{2} \mathrm{~d} y=\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}
\end{aligned}
$$

4. The unilateral Laplace transform of $f(t)$ is $\frac{1}{s^{2}+s+1}$. The unilateral Laplace

Answer:- (D)
Exp:- If $f(t) \leftrightarrow F(s)$, then $t f(t) \leftrightarrow-\frac{d}{d s} F(s)$
Thus if $F(s)=\frac{1}{s^{2}+s+1}$
$t f(t) \rightarrow-\frac{d}{d s}\left(\frac{1}{s^{2}+s+1}\right)=\frac{2 s+1}{s^{2}+s+1}$
5. Given
$f(z)=\frac{1}{z+1}-\frac{2}{z+3}$. If C is a counter-clockwise path in the z-plane such that $|z+1|=1$, the value of $\frac{1}{2 \pi j} \oint_{C} f(z) d z$ is
(A) -2
(B) -1
(C) 1
(D) 2

Answer:- (C)
Exp:- $\frac{1}{2 \pi i} \oint_{C} f(z) d z=\frac{1}{2 \pi i}[\underbrace{\oint_{c}^{\frac{1}{z+1}} \mathrm{~d} z}_{\mathrm{I}_{1}}-\underbrace{\oint_{\mathrm{C}} \frac{z}{z+3} \mathrm{~d} z}_{\mathrm{I}_{2}}]$
$z=-1$ is singularity in c and $z=-3$ is not in c
By cauchy's integral formula $I_{2}=\oint_{c} \frac{z}{z+3} d z=0$
$\therefore I_{1}=\oint_{c} \frac{1}{z+1} d z=1 ; I_{1}-I_{2}=1$
6. The average power delivered to an impedance $(4-j 3) \Omega$ by a current $5 \cos (100 \pi t+100) \mathrm{A}$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

Answer:- (B)
Exp:- $\mathrm{Z}=4-\mathrm{j} 3=\mathrm{R}_{\mathrm{L}}-\mathrm{JX} \mathrm{X}_{\mathrm{c}} ; \mathrm{R}_{\mathrm{L}}=4 ; \mathrm{I}=5 \cos (100 \pi \mathrm{t}+100)=\mathrm{I}_{\mathrm{m}} \cos (\omega \mathrm{t}+\alpha)$
$\mathrm{P}=\frac{1}{2} \mathrm{I}_{\mathrm{m}}{ }^{2} \mathrm{R}_{\mathrm{L}}=\frac{1}{2} \times 5^{2} \times 4=50 \mathrm{~W}$
7. In the circuit shown below, the current through the inductor is:
(A) $\frac{2}{1+j} A$
(B) $\frac{-1}{1+j} \mathrm{~A}$

Answer:- (C)
Exp:-

$$
I_{L}=1 \underline{0} \times \frac{1}{1+j 1}=\frac{1}{1+j 1} \mathrm{~A}
$$

8. In the following figure, C_{1} and C_{2} are ideal capacitors. C_{1} has been charged to 12 V before the ideal switch S is closed at $\mathrm{t}=\mathrm{O}$. The current $\mathrm{i}(\mathrm{t})$ for all t is:

(A) zero
(B) a step function
(C) an exponentially decaying function
(D) an impulse function

Answer:- (D)
Exp:- When the switch in closed at $t=0$
Capacitor C_{1} will discharge and C_{2} will get charge since both C_{1} and C_{2} are ideal and there is no-resistance in the circuit charging and discharging time constant will be zero.
Thus current will exist like an impulse function.

$$
\begin{aligned}
& i=\frac{V-0.7}{500} \\
& \frac{d i}{d V}=\frac{1}{500} \\
& \Rightarrow r_{d}=500 \Omega
\end{aligned}
$$

Since diode will be forward biased voltage across diode will be 0.7 V

$$
10-0.7
$$

9.

The impedance looking into nodes 1 and 2 in the given dicur

(A) 50Ω
(B) 100Ω
(C) $5 \mathrm{k} \Omega$
(D) $10.1 \mathrm{k} \Omega$

Answer:- (A)
Exp:-

After connecting a voltage source of V
$V_{1}=V_{2} \Rightarrow(10 k)\left(-i_{b}\right)=100\left(I+99 i_{b}+i_{b}\right)$;
$-10000 i_{6}=100 I+100 \times 100 i_{6}=100 I+10000 i_{b}$
$-20000 i_{b}=100 I \Rightarrow i_{b}=-\left(\frac{100}{20000}\right) \dot{I}=\left[-\frac{I}{200}\right]$
$V=100\left[I+99 i_{b}+i_{b}\right]=100\left[I+100\left(\frac{-I}{200}\right)\right]=50 I$
$R_{\text {th }}=\frac{V}{I}=\frac{50 I}{I}=50 \Omega$
10. The i-v characteristics of the diode in the circuit given below are:

$$
i= \begin{cases}\frac{V-0.7}{500} A, & V \geq 0.7 V \\ 0 A_{t} & V<0.7 V\end{cases}
$$

The current in the circuit is:
11. A system with transfer function
$G(s)=\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)}$ is excited by $\sin (\omega t)$. The steady stat system is zero at:
(A) $\omega=1 \mathrm{rad} / \mathrm{s}$
(B) $\omega=2 \mathrm{rad} / \mathrm{s}$
(C) $\omega=3 \mathrm{rad} / \mathrm{s}$
(D) $\omega=4 \mathrm{n}$

Answer:- (C)
Exp:- Steady state output of system is
$y(t)=|G(j \omega)| \sin (\omega t+G(j \omega))$
for $y(t)$ to be zero
$|\mathrm{G}(\mathrm{j} \omega)|$ can be zero
$|G(j \omega)|=\frac{\left(-\omega^{2}+9\right) \sqrt{\omega^{2}+4}}{\sqrt{\omega^{2}+1} \sqrt{\omega^{2}+9} \sqrt{\omega^{2}+16}}$
\Rightarrow at $\omega=3 \mathrm{rad} / \mathrm{sec}$
$|G(j \omega)|=0$
thus $y(t)=0$
12. The output Y of a 2 -bit comparator is logic 1 whenever the 2 -bit input A is greater than the 2-bit input B . The number of combinations for which the output is \log ic 1 , is:
(A) 4
(B) 6
(C) 8
(D) 10

Answer:- (B)
Exp:- Input A
Input B
Y

13. In the sum of products function $f(X, Y, Z)=\sum(2,3,4,5,7$ un plicants are:
(A) $\bar{X} Y, X \bar{Y}$
(B) $\bar{X} Y, X \bar{Y} \bar{Z}, X \bar{Y} Z$
(C) $\bar{X} Y \bar{Z}_{r} \bar{X} Y Z_{I} X \bar{Y}$
(D) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \overline{Y Z}, X \bar{Y} Z$

Answer:- (A)
Exp:- . $z^{x y}$

Implicates are $\bar{x} y \bar{z}_{t} \bar{x} y z_{t} x \bar{y}_{\bar{z}}, x \bar{y} z$
The prime implicants are $\bar{x} y$ and $x \bar{y}$
14. Consider the given circuit

In this circuit, the race around
(A) does not occur
(B) occurs when CLK $=0$
(C) occurs when $\mathrm{CLK}=1$ and $\mathrm{A}=\mathrm{B}=1$
(D) occurs when $C L K=1$ and $A=B=0$

Answer:- (A)

15. If $x[n]=(1 / 3)^{|n|}-(1 / 2)^{n} u[n]$, then the region of convergen transform in the z-plane will be:
(A) $\frac{1}{3}<|z|<3$
(B) $\frac{1}{3}<|z|<\frac{1}{2}$
(C) $\frac{1}{2}<|z|<3$
(D)

Answer:- (C)

Exp:- $x[n]=(1 / 3)^{\mid n}-\left(\frac{1}{2}\right)^{n} u[n]$
for $(1 / 3)^{\text {ld }} \quad$ ROC is $\frac{1}{3}<|z|<3$
for $(1 / 2)^{n} u[n]$ ROC is $|z|>\frac{1}{2}$
Thus common ROC is $\frac{1}{2}<|z|<3$
16. A capacitive motion transducer circuit is shown. The gap d between the parallel plates of the capacitor is varied as $d(t)=10^{-3}[1+0.1 \sin (1000 \pi t)] \mathrm{m}$. If the value of the capacitance is 2 pF at $\mathrm{t}=0 \mathrm{~ms}$, the output voltage V_{o} at $\mathrm{t}=2 \mathrm{~ms}$ is:

(A) $\frac{\pi}{2} m V$
(B) $\pi m V$
(C) $2 \pi \mathrm{mV}$
(D) $4 \pi \mathrm{mV}$

Answer:- (B)
17. A psychrometric chart is used to determine
(A) pH
(B) Sound velocity in glasses
(C) CO_{2} concentration
(D) Relative humidity

Answer:- (D)

18. A strain gauge is attached on a cantilever beam as shown. If the base of the cantilever vibrates according to the equation $x(t)=\sin \omega_{1} t+\sin \omega_{2} t_{r}$ where $2 \mathrm{rad} / \mathrm{s}<\omega_{1}, \omega_{2}<3 \mathrm{rad} / \mathrm{s}$ then the output of the strain gauge is proportional to

19.

The transfer function of a Zero-Order-Hold system with
(A) $\frac{1}{\mathrm{~s}}\left(1-\mathrm{e}^{-\mathrm{Ts}}\right)$
(B) $\frac{1}{s}\left(1-e^{-T s}\right)^{2}$
(C) $\frac{1}{\mathrm{~s}} \mathrm{e}^{-\mathrm{Ts}}$

Answer:- (A)
20. An LED emitting at $1 \mu \mathrm{~m}$ with a spectral width of 50 nm is used in a Miche interferometer. To obtain a sustained interference, the maximum optical pa difference between the two arms of the interferometer is:
(A) $200 \mu \mathrm{~m}$
(B) $20 \mu \mathrm{~m}$
(C) $1 \mu \mathrm{~m}$
(D) 50 nm

Answer:- (D)

21. Light of wavelength 630 nm in vacuum, falling normally on a biological specimen of thickness $10 \mu \mathrm{~m}$, splits into two beams that are polarized at right angles. The refractive index of the tissue for the two polarizations are 1.32 and 1.333. When the two beams emerge, they are out of phase by:
(A) 0.13°
(B) 74.3°
(C) 90.0°
(D) 128.6°

Answer:- (C)

22. The responsivity of the PIN photodiode shown is $0.9 \mathrm{~A} / \mathrm{W}$. To obtain $\mathrm{V}_{\text {out }}$ of -1V for an incident optical power of 1 mW , the value of R to be used is:

(A) 0.9Ω
(B) 1.1Ω
(C) $0.9 \mathrm{k} \Omega$
(D) $1.1 \mathrm{k} \Omega$

Answer:- (C)
23. A periodic voltage waveform observed on an oscilloscope across a load is shown. A permanent magnet moving coil (PMMC) meter connected across the same load reads.

For the circuit shown in the figure, the voltage and currewnern $\mathrm{v}(\mathrm{t})=\mathrm{E}_{1} \sin (\omega \mathrm{t})+\mathrm{E}_{3} \sin (3 \omega t)$ and $\mathrm{i}(\mathrm{t})=\mathrm{I}_{1} \sin \left(\omega \mathrm{t}-\phi_{1}\right)+\mathrm{I}_{3} \sin (3 \omega \mathrm{t}$ The average power measured by the Wattmeter is:

(A) $\frac{1}{2} E_{1} I_{1} \cos \phi_{1}$
(B) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{1} I_{3} \cos \phi_{3}+E_{1} I_{5}\right]$
(C) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{3} I_{3} \cos \phi_{3}\right]$
(D) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{3} I_{1} \cos \phi_{1}\right]$

Answer:- (C)
25. The bridge method commonly used for finding mutual inductance is:
(A) Heaviside Campbell bridge
(B) Schering bridge
(C) De Sauty bridge
(D) Wien bridge

Answer:- (A)

Q. No. 26 - 51 carry Two Marks Each

26. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is:
(A) $1 / 3$
(B) $1 / 2$
(C) $2 / 3$
(D) $3 / 4$

Answer:- (C)

Exp:- $\mathrm{P}($ odd tosses $)=\mathrm{P}(\mathrm{H})+\mathrm{P}($ TTH $)+\mathrm{P}($ TTTH $)+\ldots .$.

$$
\begin{aligned}
& =\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{5}+\ldots \ldots=\frac{1}{2}\left(1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}+\ldots . .\right) \\
= & \frac{1}{2}\left[1+\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}+\ldots \ldots\right]=\frac{1}{2}\left(\frac{1}{1-\frac{1}{4}}\right)=\frac{1}{2} \times \frac{4}{3}=\frac{2}{3}
\end{aligned}
$$

27. Given that

$$
A=\left[\begin{array}{cc}
-5 & -3 \\
2 & 0
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text {, the value of } A^{3} \text { is }
$$

(A) $15 \mathrm{~A}+12 \mathrm{I}$
(B) $19 \mathrm{~A}+30 \mathrm{I}$
(C) $17 \mathrm{~A}+15 \mathrm{I}$
(D) $17 \mathrm{~A}+21 \mathrm{I}$

Characteristic equation of A is $|A-I \lambda|=0 \Rightarrow\left|\begin{array}{cc}-5-\lambda & -3 \\ 2 & 0-\lambda\end{array}\right|=0$
$\Rightarrow(-5-\lambda)(-\lambda)+6=0 \Rightarrow 5 \lambda+\lambda^{2}+6=0$
$\Rightarrow \lambda^{2}=-5 \lambda-6$ and $\lambda^{3}=-5 \lambda^{2}-6 \lambda=-5(-5 \lambda-6)-6 \lambda$
$\lambda^{3}=25 \lambda-6 \lambda+30=19 \lambda+30$
Every satisfies its characteristic equation; $\therefore A^{3}=19 A+30 I$
28. The direction of vector A is radially outward from the origin, with $|A|=k r^{n}$ where $r^{2}=x^{2}+y^{2}+z^{2}$ and k is constant. The value of n for which $\nabla \cdot A=0$ is:
(A) -2
(B) 2
(C) 1
(D) 0

Answer:- (A)
Exp:- We know that, $\nabla \cdot \overrightarrow{\mathrm{A}}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \mathrm{~A}_{\mathrm{r}}\right)$

$$
\begin{aligned}
& \text { Now } \nabla \cdot \overrightarrow{\mathrm{A}}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \mathrm{~A}_{\mathrm{r}}\right) \\
& \quad=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{kr}^{r+2}\right)=\frac{\mathrm{k}}{\mathrm{r}^{2}}(\mathrm{n}+2) \mathrm{r}^{\mathrm{n}+1} \\
& \quad=\mathrm{k}(\mathrm{n}+2) \mathrm{r}^{\mathrm{n}+1} \\
& \therefore \text { For } \nabla \cdot \overrightarrow{\mathrm{A}}=0_{t} \Rightarrow(\mathrm{n}+2)=0 \Rightarrow \mathrm{n}=-2
\end{aligned}
$$

29. The maximum value of $f(x)=x^{3}-9 x^{2}+24 x+5$ in the interval $[1,6]$ is:
(A) 21
(B) 25
(C) 41
(D) 46

Answer:- (C)
EXP:- Given, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-9 \mathrm{x}^{2}+24 \mathrm{x}+5$
$f^{\prime}(x)=0$ for stationary values $\Rightarrow 3 x^{2}-18 \mathrm{x}+24=0 \Rightarrow x=2,4$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-18 ; \mathrm{f}^{\prime \prime}(2)=12-18<0 ; \mathrm{f}^{\prime \prime}(4)=24-18>0$
Hence $f(x)$ has maximum value at $x=2$
\therefore The maximum value is $2^{3}-9 \times 2^{2}+24 \times 2+5=25$
But we have to find the maximum value in the interval $[1,6]$
$\therefore f(6)=6^{3}-9 \times 6^{2}+24 \times 6+5=41$
30. Consider the Differential equation
$\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+y(t)=\delta(t)$ with $\left.y(t)\right|_{t=0^{-}}=-2$ and $\left.\frac{d y}{d t}\right|_{t=0^{-}}=0$
The numerical value of $\frac{d y}{}$ is:

Exp: $-\frac{\mathrm{d}^{2} y(\mathrm{t})}{\mathrm{dt}^{2}}+\frac{2 \mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+y(\mathrm{t})=\delta(\mathrm{t})$
Converting to s - domain,

$$
\begin{aligned}
& s^{2} y(s)-s y(0)-y^{\prime}(0)+2[s y(s)-y(0)]+y(s)=1 \\
& {\left[s^{2}+2 s+1\right] y(s)+2 s+4=1} \\
& y(s)=\frac{-3-2 s}{\left(s^{2}+2 s+1\right)}
\end{aligned}
$$

Find inverse lapalce transform

$$
\begin{aligned}
& y(t)=\left[-2 e^{-t}-t e^{-t}\right] u(t) \\
& \frac{d y(t)}{d t}=2 e^{-t}+t e^{-t}-e^{-t} \\
&\left.\frac{d y(t)}{d t}\right|_{t=0^{+}}=2-1=1
\end{aligned}
$$

31. If $V_{A}-V_{B}=6 V_{t}$ then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

Answer:- (A)
Exp:- $I=\frac{V_{A}-V_{B}}{2}=\frac{6}{2}=3 A_{;}$Since current entering any network is same as leaving in $V_{C}-V_{D}$ branch also it is $I=3 A$

$-\quad 1 \Omega A-\cap+3 A$
32.

Assuming both the voltage sources are in phase, maximum power is transferred from circuit A to circuit B is:

(A) 0.8Ω
(B) 1.4Ω
(C) 2Ω
(D) 2.8Ω

Answer:- (A)
Exp:- Power transferred from circuit A to circuit $A=V I=\left(\frac{7}{R+2}\right)\left(\frac{6+10 R}{R+2}\right)=\frac{42+70 R}{(R+2)^{2}}$
$I=\frac{10-3}{2+R}=\frac{7}{2+R} ; V=3+I R=3+\frac{7 R}{2+R}=\left(\frac{6+10 R}{2+R}\right)$
$\frac{d P}{d R}=\frac{(R+2)^{2}(70)-(42+70 R) 2(R+2)}{(R+2)^{4}}=0$

$$
\begin{aligned}
& 70(\mathrm{R}+2)^{2}=(42+70 \mathrm{R}) 2(\mathrm{R}+2) ; 5(\mathrm{R}+2)=2(3+5 \mathrm{R}) \\
& 5 \mathrm{R}+10=6+10 \mathrm{R} ; 4=5 \mathrm{R} ; \mathrm{R}=0.8 \Omega
\end{aligned}
$$

33. The voltage gain A_{v} of the circuit shown below is:

Exp:-

> KVL in input loop, 13.7-($\left.\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right) 12 \mathrm{k}-100 \mathrm{k}\left(\mathrm{I}_{\mathrm{B}}\right)-0.7=0$
> $\Rightarrow \mathrm{I}_{\mathrm{B}}=9.9 \mu \mathrm{~A}_{;} \mathrm{I}_{\mathrm{C}}=3 \mathrm{I}_{\mathrm{B}}=0.99 \mathrm{AA}_{;} \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
> $\therefore \mathrm{r}_{\mathrm{e}}=\frac{26 \mathrm{~mA}}{\mathrm{I}_{\mathrm{E}}}=26 \Omega ; \mathrm{z}_{\mathrm{i}}=\beta r_{\mathrm{e}}=2.6 \mathrm{k} \Omega ; \quad \therefore \mathrm{A}_{\mathrm{v}}=\frac{(100 \mathrm{k} \| 12 \mathrm{k})}{26}=412$
> $z_{\mathrm{i}}{ }^{\prime}=z_{\mathrm{i}} \|\left(\frac{100 \mathrm{k}}{1+412}\right)=221 \Omega ; \mathrm{A}_{\mathrm{vs}}=\mathrm{A}_{v} \frac{z_{i}{ }^{\prime}}{z_{i}{ }^{\prime}+\mathrm{R}_{\mathrm{s}}}=(412)\left(\frac{221}{221+10 \mathrm{k}}\right)$
> $\left|\mathrm{A}_{\mathrm{vs}}\right| \approx 10$
34. The state variable description of an LTI system is given by
$\left(\begin{array}{l}\dot{x}_{1} \\ \dot{x_{2}} \\ \dot{x}_{3}\end{array}\right)=\left(\begin{array}{ccc}0 & a_{1} & 0 \\ 0 & 0 & a_{2} \\ a_{3} & 0 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) u_{;} y=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
where y is the output and u is the input. The system is controllable for:
(A) $\mathrm{a}_{1} \neq 0 ; \mathrm{a}_{2}=0 ; \mathrm{a}_{3} \neq 0$
(B) $\mathrm{a}_{1}=0 ; \mathrm{a}_{2} \neq 0 ; \mathrm{a}_{3} \neq 0$
(C) $a_{1}=0 ; a_{2} \neq 0 ; a_{3}=0$
(D) $\mathrm{a}_{1} \neq 0 ; \mathrm{a}_{2}=0 ; \mathrm{a}_{3}=0$

Answer:- (D)
Exp:- The controllability matrix

$$
=\left[\begin{array}{lll}
\mathrm{B} & \mathrm{AB} & \mathrm{~A}^{2} \mathrm{~B}
\end{array}\right]
$$

$A=\left[\begin{array}{ccc}0 & a_{1} & 0 \\ 0 & 0 & a_{2} \\ a_{3} & 0 & 0\end{array}\right]$
$B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
\Rightarrow controllability matrix $=\left[\begin{array}{ccc}0 & 0 & a_{1} a_{2} \\ 0 & a_{2} & 0 \\ 1 & 0 & 0\end{array}\right]$
35. The state transition diagram for the logic circuit shown

(A)

(B)

(C)

(D)

Answer:- (D)
Exp:- $\left.\begin{array}{ll}A=0, & y=Q \\ A=1, & y=\bar{Q}\end{array}\right\}$ when ever $A=1$, output gets into same state

36. The Fourier transform of a signal $h(t)$ is $H(j \square)=(2 \cos \omega)(\sin 2 \omega) / \omega$. The value of $h(0)$ is:
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

Answer:- (C)
Exp:-

37. Let $y[n]$ denote the convolution of
$\mathrm{h}[\mathrm{n}]$ and $\mathrm{g}[\mathrm{n}]$, where $\mathrm{h}[\mathrm{n}]=(1 / 2)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$ and $\mathrm{g}[\mathrm{n}]$ is a causal $y[0]=1$ and $y[1]=1 / 2$, then $g[1]$ equals:
(A) 0
(B) $1 / 2$
(C) 1
(D) $3 / 2$

Answer:- (A)

$$
\begin{aligned}
& \text { Exp:- } y[n]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} g(n-k) \\
& y[0]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} g(-k)=1 \\
& \Rightarrow\left(\frac{1}{2}\right)^{0} g(0)=1 \\
& \Rightarrow g(0)=1 \quad \text { Since } g(n) \text { is Causal sequence } \\
& y[1]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} g[1-k] \\
& \Rightarrow\left(\frac{1}{2}\right)^{0} g[1]+\left(\frac{1}{2}\right)^{1} g(0)=1 / 2 \\
& \mathrm{~g}[1]=0 \\
& \text { Since } g(n) \text { is Causal sequence }
\end{aligned}
$$

38. The feedback system shown below oscillates at $2 \mathrm{rad} / \mathrm{s}$ when

(A) $\mathrm{K}=2$ and $\mathrm{a}=0.75$
(B) $\mathrm{K}=3$ and $\mathrm{a}=0.75$
(C) $\mathrm{K}=4$ and $a=0.5$
(D) $\mathrm{K}=2$ and $a=0.5$

Answer:- (A)

```
Exp:- \(1+G(S) H(S)=S^{3}+a s^{2}+(2+k) s+1+k\)
    \(s^{3} \quad 1(2+k)\)
    \(s^{2} \quad a(2+k)\)
    s \(\quad a(2+k)-(2+k) 0\)
    \(s^{\circ} \quad(1+k)^{a}\)
```

For system to oscillate $a(2+k)-(1+k)=0 \Rightarrow a=\left(\frac{1+k}{2+k}\right)$

The circuit shown is a

(A) low pass filter with $f_{3 d B}=\frac{1}{\left(R_{1}+R_{2}\right) \mathrm{C}} \mathrm{rad} / \mathrm{s}$
(B) high pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(C) low pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(D) high pass filter with $f_{3 d B}=\frac{1}{\left(R_{1}+R_{2}\right) \mathrm{C}} \mathrm{rad} / \mathrm{s}$

Answer:- (B)

Exp:- $\quad V_{0}(S)=-\left(\frac{R_{2}}{R_{1}+\frac{1}{C S}}\right) v_{1}(s)$
$V_{0}(S)=-\frac{R_{2} C S}{\left(R_{1} C S+1\right)} V_{i}(S)$
Thus cutoff frequency is $\frac{1}{\mathrm{R}_{1} \mathrm{C}}$
and the filter in high pass filter
40. The input $x(t)$ and output $y(t)=\int_{-\infty}^{t} x(\tau) \cos (3 \tau) d \tau$. The system is
(A) time-invariant and stable
(B) stable and not time invariant
(C) time-invariant and not stable
(D) not time-invariant and not stable

Answer:- (B)

Exp:- $y(t)=\int_{-\infty}^{t} x(\tau) \cos (3 \tau) d \tau$
Since $y(t)$ and $x(t)$ are related with some function of time, so they are not timeinvariant.

A double convex lens is used to couple a laser beam
into an optical fiber with a numerical aperture of 0.5 . The minimum of the lens that should be used in order to focus the entire beam into the
(A) 1.44 mm
(B) 2.50 mm
(C) 4.33 mm
(D) 5 .

Answer:- (B)
42. An analog voltmeter uses external multiplier settings. With a multiplier setting $20 \mathrm{k} \Omega_{\text {, }}$ it reads 440 V and with a multiplier setting of $80 \mathrm{k} \Omega_{r}$, it reads 352 V . For a multiplier setting of $40 \mathrm{k} \Omega$, the voltmeter reads:
(A) 371 V
(B) 383 V
(C) 394 V
(D) 406 V

Answer:- (D)
43. The open loop transfer function of a unity negative feedback control system is given by $G(s)=\frac{150}{s(s+9)(s+25)}$. The gain margin of the system is:
(A) 10.8 dB
(B) 22.3 dB
(C) 34.1 dB
(D) 45.6 dB

Answer:- (C)
44. A dynamometer arm makes contact with the piezoelectric load cell as shown. The g -constant of the piezoelectric material is $50 \times 10^{-3} \mathrm{Vm} / \mathrm{N}$ and the surface area of the load cell is $4 \mathrm{~cm}^{2}$. If a torque $\tau=20 \mathrm{Nm}$ is applied to the dynamometer, the output voltage V_{0} of the load cell is:

(A) $4 V$
(B) 5 V
(C) 10 V
(D) 16 V

Answer:- (B)
45. Water (density: $1000 \mathrm{kgm}^{-3}$) stored in cylindrical drum of diameter 1 m is emptied through a horizontal pipe of diameter 0.05 m . A pitot static tube is placed inside the pipe facing the flow. At the time when the difference between the stagnation and static pressures measured by the pitot-static tube is 10 kPa , the rate of reduction in water level in the drum is:
46.

A U-tube manometer of tube diameter D is filled with a osity. If the volume of the liquid filled is V_{r} the natural frequency of liquid level about its mean position, due to small perturbations is:
(A) $\frac{\mathrm{D}}{2 \sqrt{2 \pi}} \sqrt{\frac{g}{V}}$
(B) $\frac{2 \sqrt{2}}{\sqrt{\pi}} \frac{\sqrt{g V}}{D^{2}}$
(C) $\frac{1}{2 \sqrt{\pi}} \frac{\sqrt{g D}}{V^{1 / 3}}$
(D)

Answer:- (A)
47. The open loop transfer function of a unity gain negative feedback control system is given by $\mathrm{G}(\mathrm{s})=\frac{\mathrm{s}^{2}+4 \mathrm{~s}+8}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+8)}$. The angle $\theta_{\text {, }}$ at which the root locus approaches the zeroes of the system, satisfies:
(A) $|\theta|=\pi-\tan ^{-1}\left(\frac{1}{4}\right)$
(B) $|\theta|=\frac{3 \pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$
(C) $|\theta|=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{4}\right)$
(D) $|\theta|=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$

Answer:- (D)

Common Data for Questions: 48 \& 49

With 10 V d.c. connected at port A in the linear nonreciprocal two-port network shown below, the following were observed:

1. 1ohm connected at port B draws a current of $3 A$
2. 2.50 hm connected at port B draws a current of 2 A

3. With 10 V dc connected at port $\mathrm{A}_{\text {t }}$ the current drawn by 7ohms connected at port B is:
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$

Answer:- (C)

49. For the same network, with 6 V dc connected at port A_{r}, 1ohm connected at port B

The deflection profile $y(x)$ of a cantilever beam due to application on F (in Newton) as a function of distance x from its base, $y(x)=0.001 \mathrm{Fx}^{2}\left(1-\frac{x}{3}\right) \mathrm{m}$. The angular deformation θ at the end of the ca is measured by reflecting a laser beam off a mirror M as shown in the figure:

50. The translation S of the spot of laser on the photo-detector when a force of $F=1 N$ is applied to the cantilever is:
(A) 1 mm
(B) 3 mm
(C) 6 mm
(D) 12 mm

Answer:- (B)
51. If linear variable differential transformers (LVDTs) are mounted at $x=\frac{1}{2} m$ and $x=\frac{1}{4} m$ on the cantilever to measure the effect of time varying forces, the ratio of their outputs is:
(A) $12 / 7$
(B) $40 / 11$
(C) $176 / 23$
(D) $112 / 15$

Answer:- (B)

Linked Answer Questions: Q. 52 to Q. 55 Carry Two Marks Each
Statement for Linked Answer Questions: 52 \& 53
The transfer function of a compensator is given as:
$G_{c}(s)=\frac{s+a}{s+b}$
52. G (si is a lead comnensator if:

Exp:- $\phi=\tan ^{-1} \frac{\omega}{a}-\tan ^{-1} \frac{\omega}{\beta}$
for phase lead ϕ should be $+v e \Rightarrow \tan ^{-1} \frac{\omega}{a}>\tan ^{-1} \frac{\omega}{\beta} \quad \Rightarrow a<b$
both option (A) and (C) satisfier
but option (C) will pot polar and zero as
RHS of s-plane thus not possible
Option (A) is right
53. The phase of the above lead compensator is maximum at:
(A) $\sqrt{2} \mathrm{rad} / \mathrm{s}$
(B) $\sqrt{3} \mathrm{rad} / \mathrm{s}$
(C) $\sqrt{6} \mathrm{rad} / \mathrm{s}$
(D) $\frac{1}{\sqrt{3}} \mathrm{rad} / \mathrm{s}$

Answer:- (A)
Exp: $-\omega=$ geometric mass of two carrier frequencies $=\sqrt{2 \times 1}=\sqrt{2} \mathrm{rad} / \mathrm{sec}$

Statement for Linked Answer Questions: 54 \& 55

In the circuit shown, the three voltmeter readings are $\mathrm{V}_{1}=220 \mathrm{~V}, \mathrm{~V}_{2}=122 \mathrm{~V}, \mathrm{~V}_{3}=136 \mathrm{~V}$

54. The power factor of the load is
(A) 0.45
(B) 0.50
(C) 0.55
(D) 0.60

Answer:- (A)
55. If $R_{L}=5 \Omega$, the approximate power consumption in the load is:
56. Choose the most appropriate alternative from the options giv complete the following sentence:
If the tried soldier wanted to lie down, he \qquad the mattre on the balcony
(A) should take
(B) shall take
(C) should have taken
(D) will have taken

Answer:- (C)
57. If $(1.001)^{1259}=3.52$ and $(1.001)^{2062}=7.85$, then $(1.001)^{3321}=$
(A) 2.23
(B) 4.23
(C) 11.37
(D) 27.64

Answer:- (D)
Exp:- let $1.001=x$
$\mathrm{x}^{1259}=3.52$ and $\mathrm{x}^{2062}=7.85$
$x^{3321}=x^{1259} \cdot x^{2062}=3.52 \times 7.85=27.64$
58. One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one the following is INCORRECT?
I requested that he should be given the driving test today instead of tomorrow.
(A) requested that
(B) should be given
(C) the driving test
(D) instead of tomorrow

Answer:- (B)
59. Which one of the following options is the closest in meaning to the word given below?
Latitude
(A) Eligibility
(B) Freedom
(C) Coercion
(D) Meticulousness

Answer:- (B)
60. Choose the most appropriate word from the options given below to complete the following sentence:
61. Raju has 14 currency notes in his pocket consisting of only Rs. 20 10 notes. The total money value of the notes is Rs.230. The numb notes that Raju has is
(A) 5
(B) 6
(C) 9
(D) 10

Answer:- (A)
Exp:- Let the number of Rs. 20 notes be x and Rs. 10 notes be y
$20 x+10 y=230$
$x+y=14$
$x=9$ and $y=5$
Hence the numbers of 10 rupee notes are 5
62. One of the legacies of the Roman legions was discipline. In the legions, military law prevailed and discipline was brustal. Discipline on the battlefield kept units obedient, intact and fighting, even when the odds and conditions were against them.

Which one of the following statements best sums up the meaning of the above passage?
(A) Through regimentation was the main reason for the efficiency of the Roman legions even in adverse circumstances.
(B) The legions were treated inhumanly as if the men were animals.
(C) Discipline was the armies' inheritance from their seniors.
(D) The harsh discipline to which the legions were subjected to led to the odds and conditions being against them.
Answer:- (A)
63. A and B are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a condition that whoever arrives first will not wait for the other for more than 15 minutes. The probability that they will meet on that day is
(A) $1 / 4$
(B) $1 / 16$
(C) $7 / 16$
(D) $9 / 16$

Answer:- (C)
Exp:-

[^0]$O B$ is the line when both A and B arrive at same time.
Total sample space $=60 \times 60=3600$
Favourable cases $=$ Area of OABC - Area of PQRS
$$
=3600-2 \times\left(\frac{1}{2} \times 45 \times 45\right)=1575
$$
\therefore The required probability $=\frac{1575}{3600}=\frac{7}{16}$
64. The data given in the following table summarizes the monthly budget of an average household.

Category	Amount (Rs)
Food	4000
Clothing	1200
Rent	2000
Savings	1500
Other expenses	1800

The approximate percentage of the monthly budget NOT spent on saving is
(A) 10%
(B) 14%
(C) 81%
(D) 86%

Answer:- (D)
Exp:- Total budget $=10,500$
Expenditure other than savings $=9000$
Hence, $\frac{9000}{10500}=86 \%$
65. There are eight bags of rice looking alike, seven of which have equal weight and one is slightly heavier. The weighting balance is of unimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is
(A) 2
(B) 3
(C) 4
(4) 8

Answer:- (A)
Let us categorize the bags in three groups as
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$
$B_{1} B_{2} B_{3}$
$\mathrm{C}_{1} \mathrm{C}_{2}$

$$
1^{\text {st }} \text { weighing } A \text { vs } B
$$

Case - 1
Case - 2
$2^{\text {nd }}$ weighing
C_{1} vs C_{2}
A_{1} vs A_{2}
If $\mathrm{C}_{1}>\mathrm{C}_{2}$, then C_{1}
If $\mathrm{A}_{1}=\mathrm{A}_{2}$, then A_{3}
If $\mathrm{C}_{1}<\mathrm{C}_{2}$, then C_{2}
If $\mathrm{A}_{1}>\mathrm{A}_{2}$ then A_{1}
If $A_{1}<A_{2}$, then A_{2}

[^0]: www.StudentBounty.com Homework Help \& Pastpapers

