GG: GEOLOGY AND GEOPHYSICS

Duration: Three Hours

Maximum Marks:

Read the following instructions carefully

- Student Bounty.com 1. This question paper contains 16 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All the questions in this question paper are of objective type.
- 5. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as a wrong answer.
- 6. Questions 1 through 20 are 1-mark questions and questions 21 through 85 are 2-mark questions.
- 7. Questions 71 through 73 is one set of common data questions, questions 74 and 75 is another pair of common data questions. The question pairs (76, 77), (78, 79), (80, 81), (82, 83) and (84, 85) are questions with linked answers. The answer to the second question of the above pairs will depend on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. NEGATIVE MARKING: For Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. For Q.21 to Q.75, 0.5 mark will be deducted for each wrong answer. For the pairs of questions with linked answers, there will be negative marks only for wrong answer to the first question, i.e. for Q.76, Q.78, Q.80, Q.82 and Q.84, 0.5 mark will be deducted for each wrong answer. There is no negative marking for Q.77, Q.79, Q.81, Q.83 and Q.85.
- 10. Calculator without data connectivity is allowed in the examination hall.
- 11. Charts, graph sheets and tables are NOT allowed in the examination hall.
- 12. Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.

Q. 1 - Q. 20 carry one mark each.

2008	et ends			IN PAPER - GG			
Q. 1 -	Q. 20 carry one	mark each.	(A. (200,1035) :	(D) Uranus			
Q.1	The planet having	density less than 1.0 gm/c	cm ³ is	18			
	(A) Jupiter	(B) Neptune	(C) Saturn	(D) Uranus			
Q.2	Which mineral in a	metamorphic rock indica	ates high grade metamo	rphism?			
	(A) Chlorite	(B) Muscovite	(C) Serpentine	(D) Sillimanite			
Q.3	Which of the follow	wing landforms is formed	by organisms?				
		(B) Drumlins		(D) Point bar			
Q.4	The age of the sand	dstone reservoir in Camba	av hasin is				
fr line	(A) Cretaceous	(B) Eocene	(C) Holocene	(D) Jurassic			
Q.5							
2.5	(A) Antarctica	Due to <i>Coriolis</i> effect, the ocean currents will be deflected towards the right in (A) Antarctica (B) Equator					
	(C) Southern Hemi	sphere		emisphere			
Q.6	The age of the Precambrian – Cambrian boundary (in million years) is close to						
	(A) 250		(B) 550				
	(C) 1550 (D) 2550						
Q.7	Which of the following minerals is harder than a knife blade?						
	(A) Calcite	(B) Fluorite	(C) Gypsum	(D) Quartz			
Q.8	Choose a Proterozoic stratigraphic unit from the following						
	(A) Cuddapah Supe		(B) Dharwar Sup				
	(C) Gondwana Sup		(D) Iron Ore Gro	r and bear bottom in the last			
Q.9	The correct pair of naturally occurring fissile isotope of Uranium is (A) U^{236} and U^{237} (B) U^{235} and U^{236} (C) U^{235} and U^{238} (D) U^{236} and U^{238}						
	(A) U^{230} and U^{237}	(B) U^{233} and U^{236}	(C) U^{235} and U^{238}	(D) U^{236} and U^{238}			
Q.10	In the plate tectonic	theory, the "ring of fire"	around the Pacific oce	an is related to			
	(A) convergent plate boundary (C) hot spots		(B) divergent plate boundary (D) transform fault				
0.11	Had more entropied with in the		(D) transform ra	whete more than you had a lot .			
Q.11	The shear wave is	(D) diletational					
	(A) longitudinal	(B) dilatational	(C) irrotational	(D) equivoluminal			
Q.12		the sensor of a Proton Pre	ecession Magnetometer	should be rich in			
	(A) carbon	(B) hydrogen	(C) nitrogen	(D) oxygen			
Q.13	The dominant proc	ess of heat transport in the	e lithosphere is				
	(A) advection	(B) conduction	(C) convection	(D) radiation			
Q.14	The shape of a vert (top), fresh water sa	ical electric sounding cur aturated coarse sand (mid	ve over a three layer sec dle) and clay (bottom) i	quence comprising moist soil			
	(A) A - type	(B) H - type	(C) K - type	(D) Q - type			

				a floor spreading is (D) seismic and pole is close to		
2008	DAY MINES			THE S-GO		
Q.15	The geophysical me	ethod that provided a conv	incing evidence of sea	a floor spreading is		
	(A) gravity	(B) magnetic	(C) electric	(D) seismic		
Q.16	The difference in th	ne gravity value (in mgal) l	petween the equator as	nd pole is close to		
	(A) 3786	(B) 4586	(C) 5186	(D) 5986		
Q.17	With respect to the	O ben lebiscimi e f (të)	ver domini dash e			
Q.17	the shape of	Earth-Moon axis, the tidal	deformation of the Ea	arth produced by the Moon has		
	(A) oblate ellipse	(B) oblate ellipsoid	(C) prolate ellips	se (D) prolate ellipsoid		
Q.18	A successful combi	nation of geophysical met	hods for exploration o	f kimberlite pipe is		
	(A) gravity and radi			d electromagnetic		
	(C) radiometric and	magnetic	(D) radiometric			
Q.19	Liquid outer core is	evidenced by shadow zon	e for direct P-wave in	the epicentral distance of		
	(A) 92°-132°		(B) 92°-142°			
	(C) 102°-132°		(D) 102°-142°			
Q.20	Rift valleys are bou	nded by				
	(A) normal faults (B) reverse faults (C) strike-slip faults (D) transform faults					
			(-)	(2) transform rauns		
Q.21	The composition of a sandstone is as follows: Quartz: 55%, Feldspar: 25%, Rock fragments: 1% and Matrix: 19%					
	Petrographically, the	e sandstone is classified as	di siffayanî hersentile in			
	(A) arkose		(B) arkosic wacke			
	(C) lithic arenite		(D) quartz wacke			
Q.22	Match the sediment	ary structures in Group I v	vith the geological pro	cesses in Group II.		
	Group I	100	Group II			
			To A			
	P. Load casts Q. Cross bedding		1. Turbulent scour			
	R. Flutes		 Melting ice Soft sediment def 	formation		
	S. Dropstones		4. Biogenic	formation		
	learning of off road		5. Migration of meg	a ripples		
	(A)	(B)	(C)	(D)		
	P-3	P-2	P – 3	P-1		
	Q-2	Q-1	Q-5	Q-4		
	R-1	R – 5	R – 1	R – 5		
	S-4	S-4	S-2	S – 2		
Q.23	The phyllodes devel	oped in echinoids to				
	(A) increase efficien	ncy in food collection	(B) protect it from s	sinking in muddy substratum		
	(C) burrow deep into		(D) protect it from t			

- SHILDEN BOUNTY COM 0.24 Two rock samples, P and Q, are characterized by the following well-preserved for P: abundance of planktonic foraminifera and radiolaria
 - Q: abundance of spore, pollen and vertebrate fossils

Which of the following statements is true about the palaeoenvironmental conditions of the r

- (A) P is estuarine and Q is deep marine
- (B) P is inter-tidal and Q is terrestrial
- (C) P is terrestrial and Q is shallow marine
- (D) P is deep marine and Q is terrestrial
- Q.25 The evidence of Turonian marine transgression in Peninsular India is
 - (A) Bagh Beds

(A) P

(B) Niniyur Formation

(C) Patcham Formation

- (D) Umaria Marine Bed
- Q.26 Match the stratigraphic units of India with their age:

Stratigraphic	Units	Age		
P. Sargur Schist		1. Oligocene		
Q. Kopili Shale	es	2. Eocene		
R. Damuda Gro	oup	3. Permian		
S. Kolhan Grou	р	4. Carboniferous		
		5. Proterozoic		
		6. Archaean		
(A)	(B)	(C)	(D)	
P-5	P-4	P-6	P-6	
Q-3	Q-3	Q-1	Q-2	
R-4	R-1	R-2	R-3	
S-1	S – 5	S-5	S-5	

Q.27 In the following depth – temperature profile the broken lines indicate geothermal gradients. The zone in which oil and gas are likely to be generated and trapped is

Q.28 If a horizontal mirror plane is added to a pyramid having three-fold symmetry, the resultant symmetry of the c-axis will be

				2			
2008				The			
2000				PAPER - GG			
Q.29	Dodecahedron and trapezohedron faces are observed in						
	(A) beryl	(B) chalcopyrite	(C) fluorite	(D) garnet (D) tetragonal			
Q.30	The crystal system o	f biotite is		2			
	(A) hexagonal	(B) monoclinic	(By Syntrophia separation (C)	ATT Distribution of			
	(11) Hexagonar	(B) HIOHOCHINIC	(C) orthorhombic	(D) tetragonal			
Q.31	The {0001} section of section by	of a uniaxial mineral co	an be distinguished from a	n isotropic mineral in thin			
	(A) extinction angle	(B) pleochroism	(C) relief	(D) interference figure			
Q.32	Match the landforms	in Group I with geom	orphic processes in Group	II			
	Group I		Group II				
			Sidup II				
	P. Paired terrace		1. Glacial erosion				
	Q. Cirque		2. Glacial deposition				
	R. Barchan		3. River rejuvenation				
	S. Kames		4. Wind erosion				
			5. Wind deposition				
	(A)	(B)	(C)	(D)			
	P-4	P-2	P-3	P-3			
	Q-2	Q-3	Q-2				
	R-5	R-4	R-5	Q-1			
	S – 3	S – 1	S-4	R-5 S-2			
Q.33	Match the ore/minera	l deposits in Group I v	vith genetic processes in G				
		posito ini Group I v	in genetic processes in G	Houp II			
	Group I		Group II				
	P. Kyanite		1. Chemical sedimentat	tion			
	Q. Laterite		2. Chemical weathering				
	R. Banded iron ore		3. Metamorphic	The state of the s			
	S. Platinum		4. Magmatic				
	(A)	(B)		Grouppell in a			
	P-2	P-3	(C)	(D)			
	Q-1		P-4	P-3			
	R-3	Q-2	Q-3	Q-2			
	S-4	R – 1	R – 2	R-4			
	3-4	S-4	S-1	S – 1			
Q.34	The scale of an aerial photograph acquired from a height of 5000 m using a camera having focal length of 200 mm, is						
	(A) 1:5000	(B) 1:20000	(C) 1:40000	(D) 1:60000			
Q.35	The ratio of axial stress to corresponding axial strain for elastic material is known as						
	(A) Bulk modulus	(B) Poisson's ratio	(C) Shear modulus	(D) Young's modulus			
Q.36	An x-ray beam of wavelength $\lambda = 1.541$ Å is incident on a cubic crystal having lattice spacing of 4 Å. What will be its 20 value (where θ is the glancing angle) on x-ray diffractogram?						
	(A) 11.10°	(B) 20.10°	(C) 22.20°				
			(0) 22.20	(D) 44.20°			

Q.37	The dip slip of a fault	is 200 m and the dip an	nount is 30°. The throw	of the fault
	(A) 300	(B) 200	(C) 100	(D) Contact metamorph
Q.38	Which of the following	ng modes of origin applie	es to snowball garnet?	Sh
	(A) Pre-tectonic	(B) Syn-tectonic	(C) Post-tectonic	(D) Contact metamorph
Q.39	Rocks of which of the	following facies form u	inder low geothermal gr	adient?
	(A) Blueschist (C) Hornblende hornf	els	(B) Granulite (D) Sanidinite	
Q.40	Which of the following	ng statements is/are true	for porosity of sandston	e?
	P. Porosity increases Q. Porosity decreases R. Porosity decreases S. Porosity increases	with sorting of grains. with shale content.		
	(A) Q	(B) P, S	(C) P, R	(D) S
Q.41	On crystallization of a	northite, Sr concentration	on in the magma will	
	(A) decrease (C) increase and then	decrease	(B) increase (D) remain constant	
Q.42	If the solubility produ- solution will be	ct of gypsum is 10 ^{-4,36} , th	he solubility (mol/litre)	of gypsum in an ideal aqueous
	(A) 10 ^{-9.72}	(B) 10 ^{-4.36}	(C) 10 ^{-2.18}	(D) 10 ^{-1.09}
Q.43	What is the age of the	lignite deposit of Neyve	eli?	
	(A) Eocence	(B) Miocene	(C) Oligocene	(D) Permian
Q.44	Find the correct match in Group II	of mineral pair in Grou	p I with the correspondi	ng crystallization behaviour
	Group I	and the state of t	Group II	
	P. Silica – K feldspar Q. Albite – Anorthite R. Forsterite – Silica		 Solid solution Peritectic Eutectic 	
	(A)	(B)	(C)	(D)
	P-3 Q-1	P-1	P-2	P-3
	R-2	Q - 2 R - 3	Q – 1 R – 3	Q-2 R-1
Q.45	An igneous rock with called	50% olivine, 25% ortho	pyroxene and 25% clino	pyroxene by mode will be
	(A) dunite	(B) harzburgite	(C) lherzolite	(D) wehrlite

- Q.46 In a gravity survey, if the observation point lies below the datum plane, then for gravity reduction
 - (A) Free-air and Bouguer corrections are positive
 - (B) Free-air correction is positive and Bouguer correction is negative
 - (C) Free-air correction is negative and Bouguer correction is positive
 - (D) Free-air and Bouguer corrections are negative
- Student Bounty Com Q.47 If the Earth's magnetic field at the north pole is $60,000 \, \gamma$ and the radius of Earth is R, at what height above the north pole will its magnitude be $30,000 \gamma$?
 - (A) 0.26 R
- (B) 0.52 R
- (C) 0.78 R
- (D) 1.04 R
- Match the apparent resistivity type curves observed on the surface in Group I with the subsurface resistivity variations in Group II

Group I		Group II	
P. AK-Type Q. HK-Type R. KQ-Type S. HA-Type	2. 3. 4. 5.	$ \rho_{1} < \rho_{2} > \rho_{3} > \rho_{4} \rho_{1} > \rho_{2} < \rho_{3} > \rho_{4} \rho_{1} > \rho_{2} < \rho_{3} < \rho_{4} \rho_{1} < \rho_{2} < \rho_{3} < \rho_{4} \rho_{1} < \rho_{2} < \rho_{3} < \rho_{4} \rho_{1} < \rho_{2} > \rho_{3} < \rho_{4} \rho_{1} < \rho_{2} < \rho_{3} > \rho_{4} $	
(A) P-2 Q-4 R-1	(B) P-3 Q-4 R-2	(C) P-4 Q-5 R-6	(D) P-6 Q-2 R-1
S – 3	S-6	S-1	S-3

The plane wave electromagnetic field traveling vertically downward in a homogeneous half-space of resistivity 500 Ωm varies with depth 'z' as,

$$H_y(z) = H_0 e^{-0.5z} \{\cos(\omega t - 0.5z) + i \sin(\omega t - 0.5z)\}$$

What is the frequency (in Hz) of the primary field given $\mu = \mu_0 = 4\pi \times 10^{-7}$ h/m?

- (A) 7.16×10^7
- (B) 5.16×10^7
- (C) 3.16×10^7
- (D) 1.16×10^7
- Wenner survey is performed over a homogeneous ground of resistivity 200 Ω m. For the current electrode spacing of 60 m, 100 mA current flow is recorded. What will be the magnitude of potential difference (in mV) between potential electrodes?
 - (A) 53.0
- (B) 159.2
- (C) 477.7
- (D) 1433.1
- Potential Difference (PD) and Gradient of Potential Difference (GPD) are measured along a profile Q.51 over a massive sulfide body in self-potential survey. Which of the following statements is correct for the anomalies over the center of the body?
 - (A) PD is positive and GPD is positive
- (B) PD is positive and GPD is zero
- (C) PD is negative and GPD is negative
- (D) PD is negative and GPD is zero

				2.		
00				THE !		
Q.52	Match the phase diff amount of phase diff		quantities of induction	Group II 1. leads by 90° 2. lags by 90°		
	G	roup I		Group II		
		with respect to prima		1. leads by 90°		
	with respect to p			2. lags by 90°		
	with respect to p	conent of secondary frimary field conent of secondary f		3. lags between 90° - 180°		
	with respect to in	phase component of	secondary field	4. lags by 180°		
	(A)	(B)	(C)	(D)		
	P- 4 Q- 1	P- 1	P- 2	P- 3		
	R- 3	Q- 2 R- 4	Q- 3 R- 1	Q- 4 R- 2		
	S- 2	S- 3	S- 4	R- 2 S- 1		
	Which of the following combinations of electromagnetic field components is measured in magnetotelluric method?					
	(A) E_x , E_y , H_x , H_y , I (C) E_x , E_y , E_z , H_y , I		(B) E_x , E_y , I (D) E_x , E_z , I			
	Which form of parti anomalies in geophy		on is used for the interp	pretation of electromagnetic		
	(A) Diffusion equati (C) Poisson's equati			(B) Laplace's equation (D) Wave equation		
5	A radioactive substance decays to one third of its original value in 6 hours time. What is the half-life (in hours) of the substance?					
	(A) 3.58	(B) 3.78	(C) 3.98	(D) 4.18		
	The relation betwee	n magnetic latitude (θ) and the magnetic in	clination (i) is		
	(A) $2 \tan i = \tan \theta$	(B) $\tan i = 2 \tan i$	θ (C) $\tan i = 2$	$\tan^2 \theta$ (D) $2 \tan i = \cos \theta$		
	To derive magnetic field from gravity field, the Poisso direction of magnetization is		eld, the Poisson's relati	on can be used only when the		
	(A) horizontal (0°)	(B) 45°	(C) 60°	(D) vertical (90°)		
3	Fourier analysis mannumber of	tches the signal by a	series of sinusoids. Eac	ch member of the series fits an		
	(A) one-fourth wavelength (C) half-wavelength		(B) one-thir (D) one way	d wavelength relength		
9	Compton scattering	is the physical basis	of			
	(A) Neutron - Gamr (C) Natural Gamma			n - thermal neutron logging - Gamma logging		
60	If the P-wave veloci material is	ty is twice that of S-	wave velocity in a med	ium, the Poisson's ratio of the		
	(A) 0.50	(B) 0.33	(C) 0.25	(D) 0.12		

Student Bounty.com The Lame's coefficient (λ) can be written in terms of compressibility of the material Poisson's ratio (σ) as

(A)
$$\lambda = \frac{3\sigma}{(1+\sigma)\beta}$$

(B)
$$\lambda = \frac{(1+\sigma)}{3\sigma\beta}$$

(C)
$$\lambda = \frac{\sigma}{(1+\sigma)(1-2\sigma)\beta}$$

(D)
$$\lambda = \frac{3(1-2\sigma)}{\beta}$$

- The amplitude of seismic wave varies due to spherical spreading as a function of 0.62
 - (A) radius of sphere

(B) 1 / (radius of sphere)

(C) (radius of sphere)²

(D) 1 / (radius of sphere)²

If f is the frequency of seismic wave and v is its velocity, the relation between absorption coefficient (α) and quality factor (Q) is

$$(A) \alpha = \frac{\pi f}{O \nu}$$

(A) $\alpha = \frac{\pi f}{Qv}$ (B) $\alpha = \frac{Qf}{\pi v}$ (C) $\alpha = \frac{Qv}{\pi f}$ (D) $\alpha = \frac{\pi Q}{vf}$

In marine seismic surveys, the maximum depth d (in feet) at which the bubble will break is related to the charge weight W (in pounds) by the relation

(A) d = 3.8 W

(B) $d = 3.8 W^{1/2}$ (C) $d = 3.8 W^{1/3}$ (D) $d = 3.8 W^{1/4}$

Considering noise problem (reverberation) in marine seismic work, the frequencies for higher Q.65 harmonics are expressed by $f_n = \frac{(2n-1)V_w}{4d}$, where f_n - frequency of nth harmonic, V_w - velocity of sound in water and d_w - water depth. The fundamental frequency in terms of the reciprocal of one - way travel time is

(A) one - fourth

(B) one - third

(C) one - half

(D) three - fourth

In a linear inverse problem having rectangular system matrix that is rank deficient, the inverse solution is

(A) unique solution

(B) least square solution

(C) minimum norm solution

- (D) minimum norm least square solution
- In a linear inverse problem having eigenvalues 100, 10, 1, 0.1, 0.01, 0.001, the highest condition 0.67 number of the system matrix is

(A) 100000

(B) 10000

(C) 1000

(D) 100

A combination of radioactive logging to detect chlorine in a formation is

(A) Neutron-thermal neutron log and Gamma-Gamma log

(B) Neutron-epithermal neutron log and Neutron-Gamma log

(C) Neutron-Gamma log and Gamma-Gamma log

- (D) Neutron-epithermal neutron log and Gamma-Gamma log
- Q.69 In electrical logging, the measured resistivity of flushed zone is 19.2 Ω m, the resistivity of mudfiltrate is 1.33 Ω m and the computed value of residual oil saturation in flushed zone is 20%. The value of formation resistivity factor is

(A) 8.50

(B) 8.85

(C) 9.11 (D) 9.24

Q.70 In a seismic reflection survey, lithological boundaries P (Shale and Gas sand), C sand) and R (Oil sand and Water sand) computed on the basis of reflection coeffic in figure. Which is the correct sequence of reflection coefficients at these boundaries?

(A) P (-0.30), Q (+0.20), R (+0.03)

(B) P (-0.30), Q (+0.03), R (+0.20)

(C) P (+ 0.20), Q (- 0.30), R (+ 0.03)

(D) P (+ 0.20), Q (+ 0.03), R (- 0.30)

Common Data Questions

Common Data for Questions 71, 72 and 73: The following geological map shows exposures of sedimentary beds p, q, r, s, t and a batholith (hatched) in a flat terrain.

F-F: Fault U - U: Unconformity X-Y: Dyke

- Q.71 The fold seen in the area is
 - (A) a synform plunging northerly
 - (C) an antiform plunging northerly
- (B) a synform plunging southerly
- (D) an antiform plunging southerly
- Q.72 If the fault dips 70° southerly, it is a
 - (A) normal fault with southern upthrown block
 - (B) right lateral strike-slip fault
 - (C) reverse fault with northern upthrown block
 - (D) reverse fault with southern upthrown block
- Q.73 The intrusion of dyke took place
 - (A) after deposition of beds 's' and 't'
 - (B) before deposition of beds 's' and 't'
 - (C) before faulting

Student Bounty.com Common Data for Questions 74 and 75: Two sampled data sets are given as: $X(n) = \{1, 2, 2, \dots, n\}$

$$Y(n) = \{1, -1, 2, \frac{1}{2}\}$$

Q.74 The cross-correlation between these two time series for zero lag is

(B) $\frac{5}{2}$

(D) 3

The convolution of the data sets results in a time series

- (A) $\{1, 1, \frac{11}{2}, -4, \frac{17}{2}, -1, 1\}$
- (B) $\{-1, 1, -4, \frac{17}{2}, \frac{1}{2}, -1, 1\}$
- (C) $\{1, 1, -1, \frac{17}{2}, -4, \frac{11}{2}, \frac{3}{2}\}$

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 and 77: A mineral assemblage consists of fayalite, ferrosilite and quartz in equilibrium.

Q.76 The number of components in the system is

- (A) 4
- (B) 3
- (C) 2
- (D) 1

The degree of freedom of the mineral assemblage in P-T space is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Statement for Linked Answer Questions 78 and 79: The Fe - O bond length in haematite is 2.05 Å and the ionic radius of anion is 1.32 Å.

Q.78 The correct pair of radius ratio and coordination number is

- (A) 0.220 and 3
- (B) 0.380 and 4
- (C) 0.553 and 6
- (D) 0.770 and 8

The electrostatic valency of the cation is

- (A) 0.25
- (B) 0.5
- (C) 1.0
- (D) 3.0

Statement for Linked Answer Questions 80 and 81: The gravity anomaly along a profile over a spherical ore body shows a maximum anomaly of 12 mgal at the centre and a value of 6 mgal at a distance of 3600 m from the centre. The density contrast between the ore mass with the surrounding rocks is 0.4 gm/cm³.

The computed depth (in m) to the centre of the spherical mass is

- (A) 2340
- (B) 2940
- (C) 3780
- (D) 4680

Q.81 The computed radius (in m) of the spherical mass is

- (A) 1965
- (B) 2865
- (C) 3250
- (D) 3685

StudentBounty.com Statement for Linked Answer Questions 82 and 83: A P-wave generated incident at an angle of 30° on a horizontal interface and refracted at an angle of 50° The velocity in the first medium is 3.5 km/s. Densities in the first and second layer are 2.5 gm/cm³, respectively.

- Q.82 The velocity (in km/s) in the second layer is
 - (A) 5.36
- (B) 4.86
- (C) 4.55
- The reflection coefficient for the ratio of reflected and incident P-wave amplitudes at normal incidence is
 - (A) 0.32
- (B) 0.28
- (C) 0.25
- (D) 0.21

Statement for Linked Answer Questions 84 and 85: Two students were assigned the same 3-layer Schlumberger resistivity sounding data for interpretation. They interpreted different model parameters. First student interpreted resistivities $\rho_1 = 10~\Omega m$, $\rho_2 = 50~\Omega m$, $\rho_3 = 10~\Omega m$, thicknesses $h_1 = 50~m$ and $h_2 = 10 \text{ m}.$

- Q.84 Which combination of ρ_2 and h_2 interpreted by the second student is correct according to the principle of equivalence?
 - (A) $\rho_2 = 25 \Omega \text{m}$ and $h_2 = 5 \text{ m}$
- (B) $\rho_2 = 25 \ \Omega \text{m}$ and $h_2 = 20 \ \text{m}$
- (C) $\rho_2 = 100 \ \Omega m$ and $h_2 = 20 \ m$
- (D) $\rho_2 = 100 \ \Omega \text{m}$ and $h_2 = 40 \ \text{m}$
- Transverse resistance and longitudinal conductance calculated by the second student for the second Q.85 layer is
 - (A) $4000 \ \Omega \text{m}^2$, 0.4 mho

(B) $2000 \Omega m^2$, 0.2 mho

(C) $500 \Omega m^2$, 0.8 mho

(D) $125 \Omega m^2$, 0.2 mho

END OF THE QUESTION PAPER