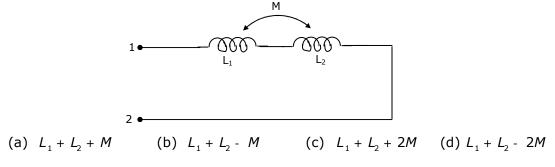
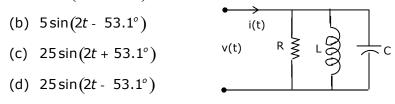


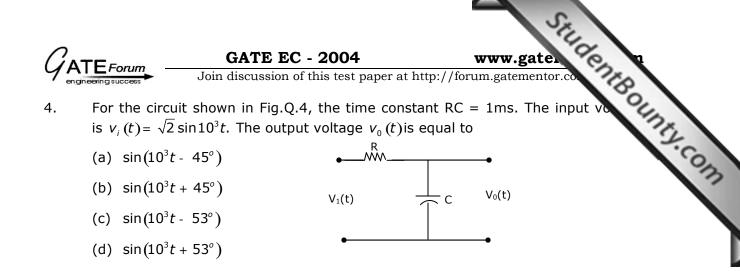
Join discussion of this test paper at http://forum.gatementor.co


www.gate

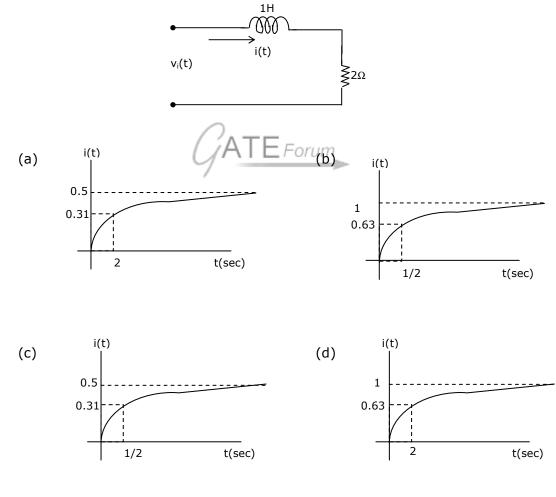
Q.1 – Q.30 Carry One Mark Each


StudentBounty.com Consider the network graph shown in figure. Which one of the following is NOT 1. 'tree' of this graph?

The equivalent inductance measured between the terminals 1 and 2 for the 2. circuit shown in figure, is



- The circuit shown in Fig.Q.3, with R = $\frac{1}{3}$ W, L = $\frac{1}{4}$ H, C = 3F has input voltage 3. $v(t) = \sin 2t$. The resulting current i(t) is
 - (a) $5\sin(2t + 53.1^{\circ})$



Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

www.StudentBounty.com lomework Help & Pastpapers

5. For the R-L circuit shown in Fig.Q.5, the input voltage $v_i(t) = u(t)$. The current i(t) is

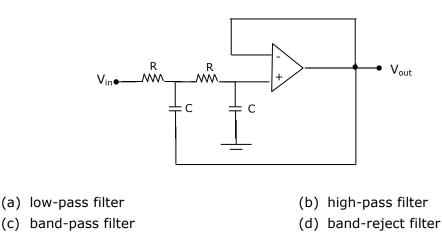
6. The impurity commonly used for realizing the base region of a silicon n-p-n transistor is
 (a) Gallium
 (b) Indium
 (c) Boron
 (d) Phosphorus

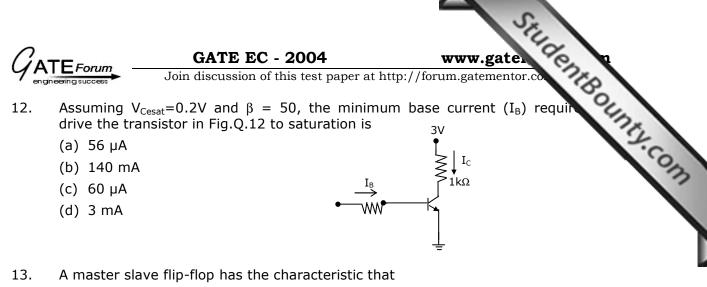
Join discussion of this test paper at http://forum.gatementor.c

- StudentBounty.com If for a silicon n-p-n transistor, the base-to-emitter voltage (V_{BE}) is 0.7V a 7. collector-to-base voltage (V_{CB}) is 0.2V, then the transistor is operating in the
 - (a) normal active mode

(b) saturation mode

(c) inverse active mode

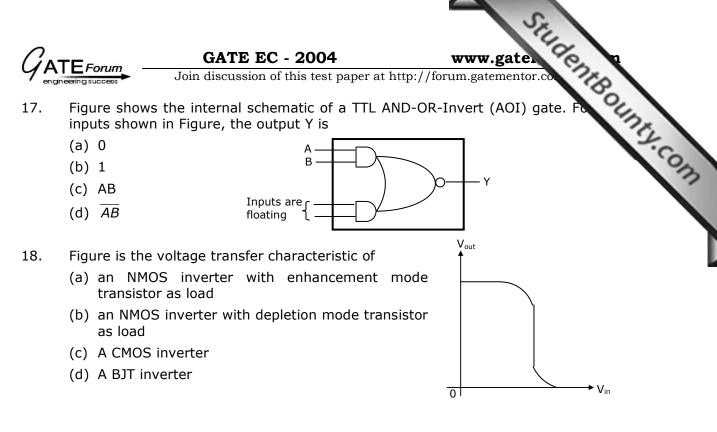

- (d) cutoff mode
- 8. Consider the following statements S_1 and S_2 .
 - S_1 : The β of a bipolar transistor reduces if the base width is increased.
 - S_2 : The β of a bipolar transistor increases if the doping concentration in the base in increased


Which one of the following is correct?

- (a) S₁ is FALSE and S₂ is TRUE
- (c) both S₁ and S₂ are FALSE
- 9. An ideal op-amp is an ideal
 - (a) voltage controlled current source
 - (c) current controlled current source
- (b) both S₁ and S₂ are TRUE
- (d) S₁ is TRUE and S₂ is FALSE
- (b) voltage controlled voltage source

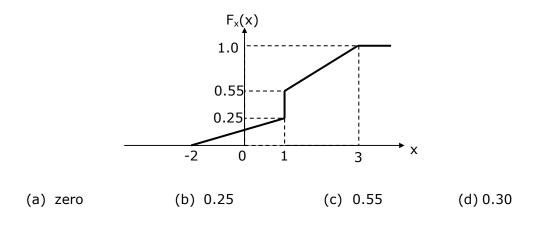
www.gatel

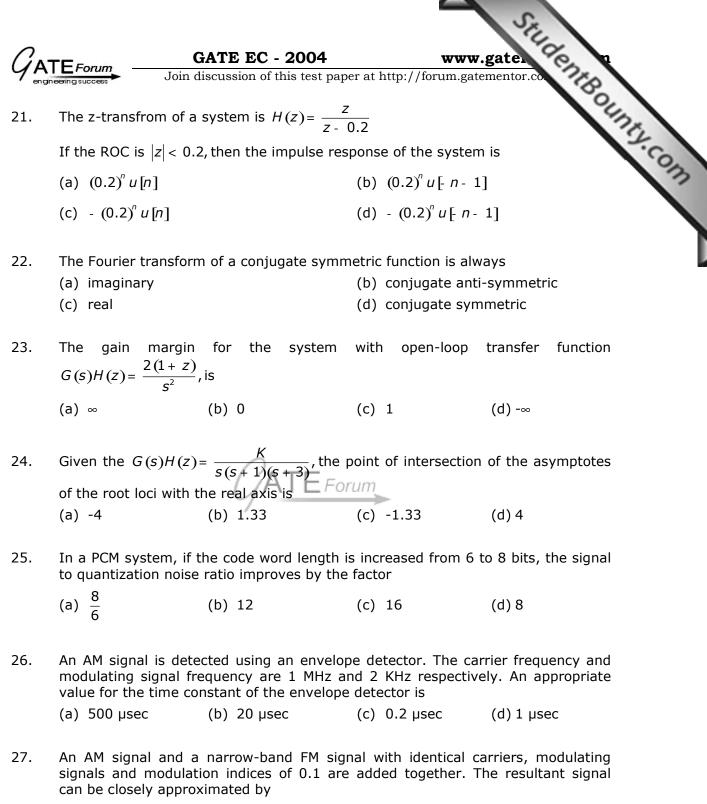
- (d) current controlled voltage source
- 10. Voltage series feedback (also called series shunt feedback) results in
 - (a) increase in both input and output impedances
 - (b) decrease in both input and output impedances
 - (c) increase in input impedance and decrease in output impedance
 - (d) decrease in input impedance and increase in output impedance
- 11. The circuit in Figure is a


- (a) change in the input immediately reflected in the output
- (b) change in the output occurs when the state of the master is affected
- (c) change in the output occurs when the state of the slave is affected
- (d) both the master and the slave states are affected at the same time
- 14. The range of signed decimal numbers that can be represented by 6-bite 1's complement number is

(a) -31 to +31 (b) -63 to +64 (c) -64 to +63 (d) -32 to +31

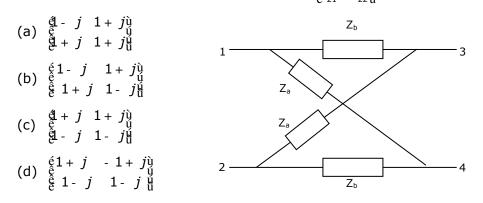
- 15. A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from a minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary is
 - (a) 8 (b) 6 (c) 5 (d) 7
- 16. Choose the correct one from among the alternatives A,B,C,D after matching an item from Group 1 with the most appropriate item in Group 2.

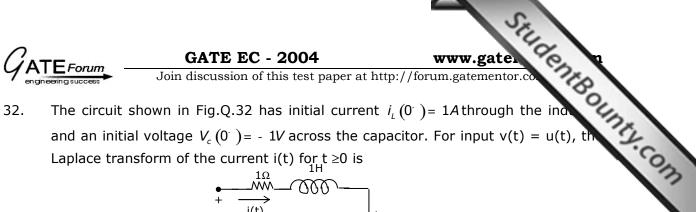

Group 1	Group 2
P. Shift register	1. Frequency division
Q. Counter	2. Addressing in memory chips
R. Decoder	3. Serial to parallel data conversion


(a) P - 3 Q - 2 R - 1	(b) P - 3 Q - 1 R - 2
(c) P - 2 Q - 1 R - 3	(d) P - 1 Q - 2 R - 2

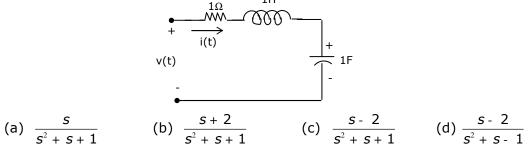
- 19. The impulse response h[n] of a linear time-invariant system is given by h[n]= u[n+3]+ u[n-2]- 2u[n-7] where u[n] is the unit step sequence. The above system is

 (a) stable but not causal
 (b) stable and causal
 (c) causal but unstable
 (d) unstable and not causal
- 20. The distribution function $f_x(x)$ of a random variable X is shown in Fig.Q.20. the probability that X = 1 is

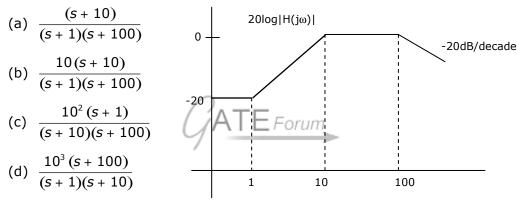

- (a) broadband FM (b) SSB with carrier
- (c) DSB-SC (d) SSB without carrier



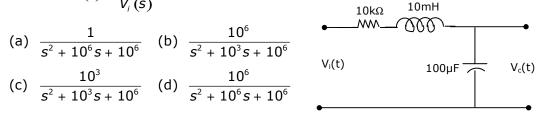
Join discussion of this test paper at http://forum.gatementor.c


www.gate

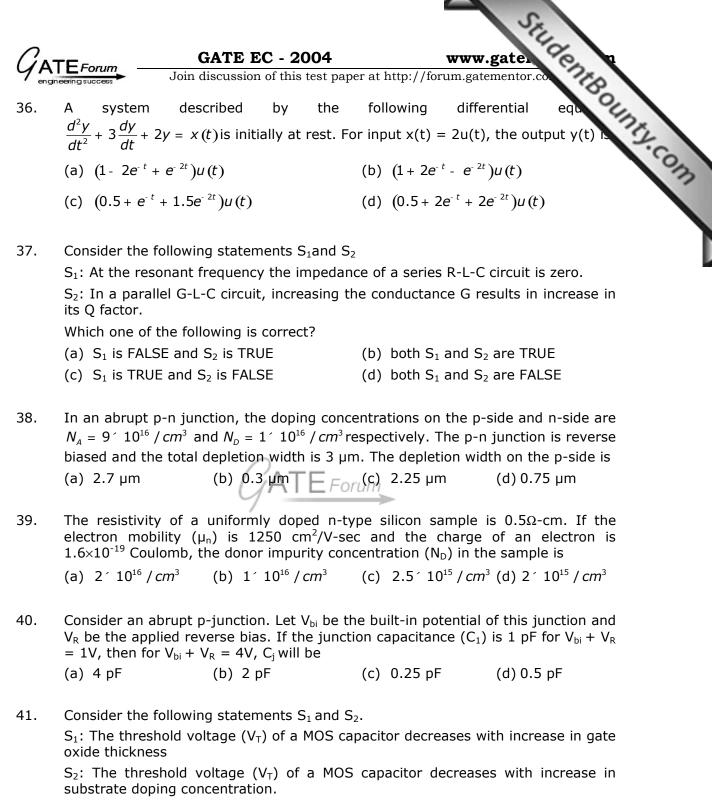
- StudentBounty.com In the output of a DM speech encoder, the consecutive pulses are of opp 28. polarity during time interval $t_1 \le t \le t_2$. This indicates that during this interval
 - (a) the input to the modulator is essentially constant
 - (b) the modulator is going through slope overload
 - (c) the accumulator is in saturation
 - (d) the speech signal is being sampled at the Nyquist rate
- 29. The phase velocity of an electromagnetic wave propagating in a hallow metallic rectangular waveguide in the TE₁₀ mode is
 - (a) equal to its group velocity
 - (b) less than the velocity of light in free space
 - (c) equal to the velocity of light in free space
 - (d) greater than the velocity of light in free space
- 30. Consider a lossless antenna with a directive gain of +6db. If 1mW of power is fed to it the total power radiated by the antenna will be
 - (d) $\frac{1}{4}mW$ (a) 4mW (b) 1mW (c) 7mW Q.31 – Q.90 Carry Two Marks Each
- For the lattice circuit shown in Fig. Q.31, $Z_a = j2W$ and $Z_b = 2W$. The values of 31. the open circuit impedance parameters $Z = \begin{cases} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \\ Z_{21} & Z_{22} \end{cases}$



and an initial voltage $V_c(0^{-}) = -1V$ across the capacitor. For input v(t) = u(t), Laplace transform of the current i(t) for $t \ge 0$ is


33. Consider the Bode magnitude plot shown in Fig.33. The transfer function H(s) is

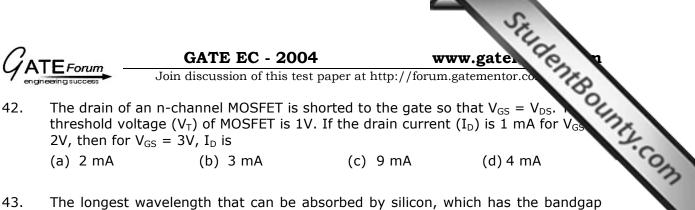
34. The transfer function
$$H(s) = \frac{V_0(s)}{V_i(s)}$$
 of an R-L-C circuit is given by


$$H(s) = \frac{10^{6}}{s^{2} + 20s + 10^{6}}$$

the Quality factor (Q-factor) of this circuit is
(a) 25 (b) 50 (c) 100 (d) 5000

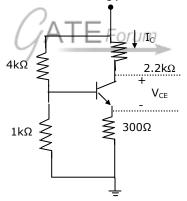
35. For the circuit shown in Fig.Q.35, the initial conditions are zero. Its transfer function $H(s) = \frac{V_c(s)}{V_c(s)}$ is

www.StudentBounty.com

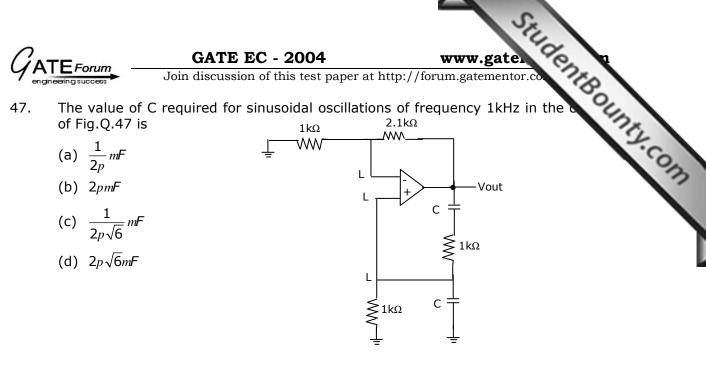

Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

Which one of the following is correct?

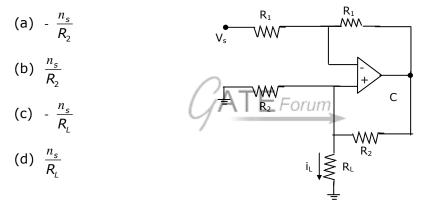
- (a) S_1 is FALSE and S_2 is TRUE
- (b) both S_1 and S_2 are TRUE
- (c) S_1 is TRUE and S_2 is FALSE
- (d) both S_1 and S_2 are FALSE


Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

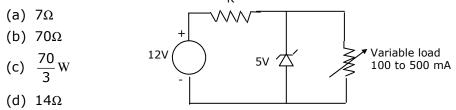
- (a) 2 mA (b) 3 mA (c) 9 mA (d) 4 mA
- 43. The longest wavelength that can be absorbed by silicon, which has the bandgap of 1.12eV, is $1.1\mu m$. If the longest wavelength that can be absorbed by another material is 0.87 μ m, then the bandgap of this material is
 - (a) 1.416 eV (b) 0.886 eV (c) 0.854 eV (d) 0.706 eV
- 44. The neutral base width of a bipolar transistor, biased in the active region, is 0.5 µm. the maximum electron concentration and the diffusion constant in the base are 10^{14} /cm³ and D_n = 25 cm²/sec respectively. Assuming negligible recombination I the base, the collector current density is (the electron charge is 1.6×10^{-19} coulomb)


(a) 800 A/cm² (b) 8 A/cm² (c) 200 A/cm^2 (d) 2 A/cm^2

45. Assuming that the β of the transistor is extremely large and V_{BE} = 0.7V, I_c and V_{CE} in the circuit shown in Figure, are 5V

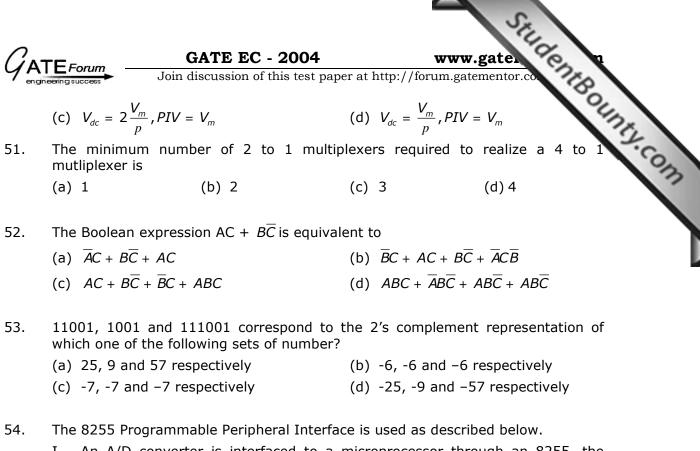


- (a) $I_c = 1mA, V_{CE} = 4.7V$ (b) $I_c = 0.5mA, V_{CE} = 3.75V$ (c) $I_c = 1mA, V_{CE} = 2.5V$ (d) $I_c = 0.5 mA, V_{cF} = 3.9 V$
- 46. A bipolar transistor is operating in the active region with a collector current of 1mA. Assuming that the β of the transistor is 100 and the thermal voltage (V_T) is 25 mV, the transconductance (g_m) and the input resistance (r_π) of the transistor in the common emitter configuration, are
 - (a) $g_m = 25mA/V$ and $r_p = 15.625kW$ (b) $g_m = 40mA/V$ and $r_p = 4.0kW$
 - (c) $g_m = 25mA/V$ and $r_p = 2.5kW$ (d) $g_m = 40mA/V$ and $r_p = 2.5kW$


Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

48. In the op-amp circuit given in Fig.Q.48, the load current I_L is

49. In the voltage regulator shown in Fig.Q.49, the load current can vary from 100mA to 500mA. Assuming that the Zener diode is ideal (i.e., the Zener knee current is negligibly small and Zener resistance is zero in the breakdown region), the value of R is

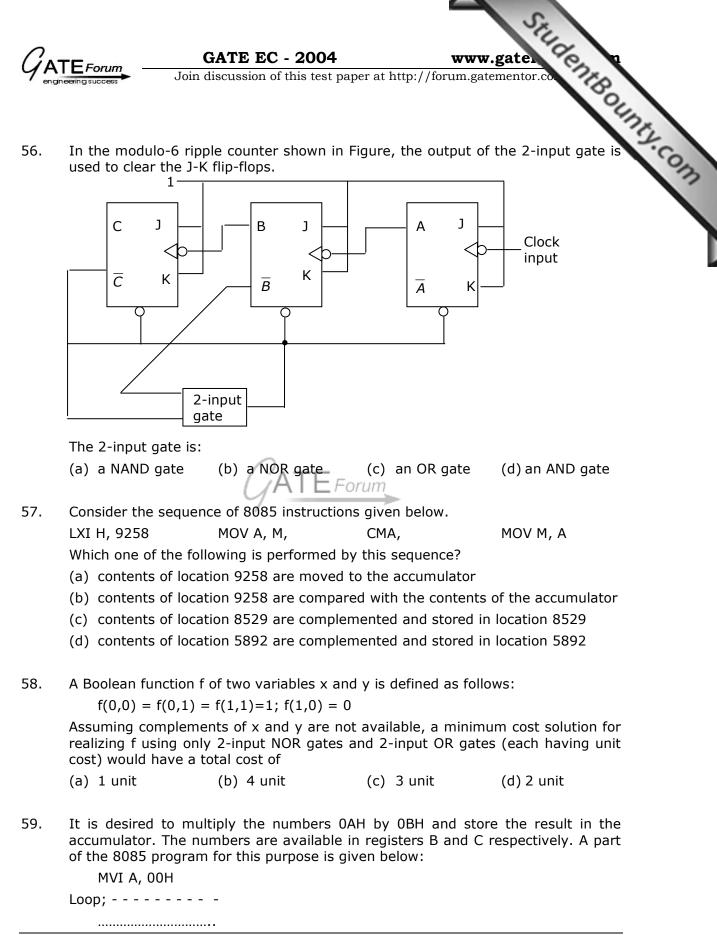


50. In a full-wave rectifier using two ideal diodes, V_{dc} and V_m are the dc and peak values of the voltage respectively across a resistive load. If PIV is the peak inverse voltage of the diode, then the appropriate relationships for this rectifier are

(a)
$$V_{dc} = \frac{V_m}{p}$$
, $PIV = 2V_m$ (b) $V_{dc} = 2\frac{V_m}{p}$, $PIV = 2V_m$

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

www.StudentBounty.com Homework Help & Pastpapers


- An A/D converter is interfaced to a microprocessor through an 8255. the Ι. conversion is initiated by a signal from the 8255 on Port C. A signal on Port C causes data to be strobed into Port Aorum
- II. Two computers exchange data using a pair of 8255s. Port A works as a bidirectional data port supported by appropriate handshaking signals.

The appropriate modes of operation of the 8255 for I and II would be

- (a) Mode 0 for I and Mode 1 for II
- (b) Mode 1 for I and Mode 0 for II
- (c) Mode 2 for I and Mode 0 for II
- (d) Mode 2 for I and Mode 1 for II
- 55. The number of memory cycles required to execute the following 8085 instructions
 - Ι. LDA 3000H
 - II. LXI D, FOF 1H

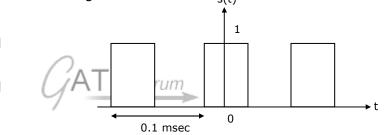
Would be

- (a) 2 for I and 2 for II (b) 4 for I and 3 for II
- (c) 3 for I and 3 for II (d) 3 for I and 4 for II

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

StudentBounty.com Join discussion of this test paper at http://forum.gatementor.co

www.gate


HLT END

......

The sequence of instruction to the complete the program would be

- (a) JNZ LOOP, ADD B, DCR C
- (b) ADD B, JNZ LOOP, DCR C
- (c) DCR C, JNZ LOOP, ADD B
- (d) ADD B, DCR C, JNZ LOOP
- 60. A 1 kHz sinusoidal signal is ideally sampled at 1500 samples/sec and the sampled signal is passed through an ideal low-pass filter with cut-off frequency 800 Hz. The output signal has the frequency
 - (b) 0.75 kHz (c) 0.5 kHz (a) zero Hz (d) 0.25 kHz
- 61. A rectangular pulse train s(t) as shown in Fig.Q.61 is convolved with the signal $\cos^2(4p'\ 10^3t)$. the convolved signal will be a s(t)
 - (a) DC
 - (b) 12 kHz sinusoid
 - (c) 8 kHz sinusoid

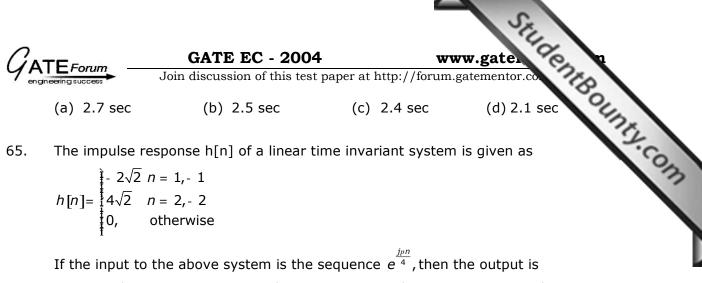
(d) 14 kHz sinusoid

62. Consider the sequence
$$x[n] = \overset{\circ}{\underset{e}{\xi}} 4 - j5 1 + j2 4 \overset{\circ}{\underset{e}{\mu}}$$

The conjugate anti-symmetric part of the sequence is

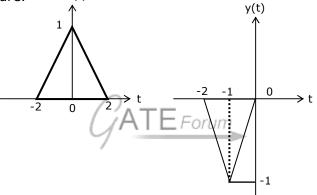
(a) [-4 – j2.5 j2 4 - j2.5] (b) [- j2.5 1 j2.5] (c) [- j5 j2 0] (d) [-4 4] 1

A casual LTI system is described by the difference equation 63. 2y[n] = ay[n - 2] - 2x[n] + bx[n - 1]


the system is stable only if

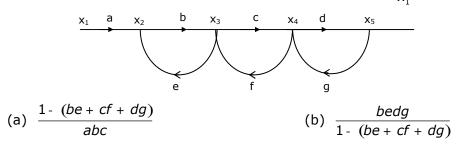
- (b) |a| > 2, |b| > 2(a) |a| = 2, |b| < 2
- (d) |b| < 2, any value of a(c) |a| < 2, any value of b

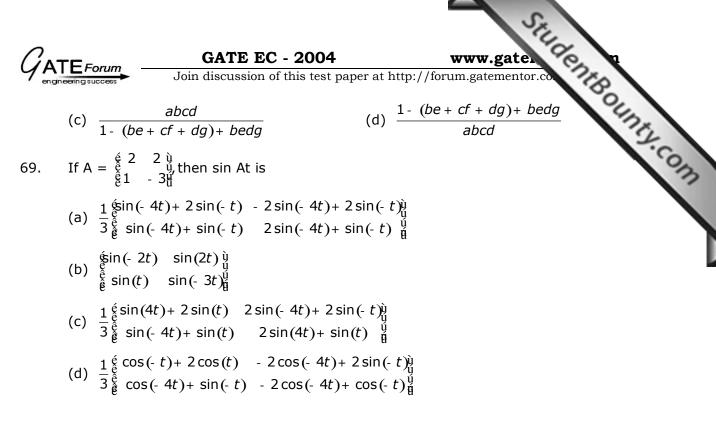
A causal system having the transfer function $H(s) = \frac{1}{s+2}$ is excited with 10u(t). 64. The time at which the output reaches 99% of its steady state value is


www.StudentBounty.com omework Help & Pastpapers

Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

(a)
$$4\sqrt{2}e^{\frac{j_pn}{4}}$$
 (b) $4\sqrt{2}e^{\frac{j_pn}{4}}$ (c) $4e^{\frac{j_pn}{4}}$ (d) $-4e^{\frac{j_pn}{4}}$


66. Let x(t) and y(t) (with Fourier transforms X(f) and Y(f) respectively) be related as shown in Figure. x(t)


Then Y(f) is

(a)
$$-\frac{1}{2}X_{g_{2}}^{af}\overset{\circ}{\underline{b}}_{p}^{-}e^{-j2pf}$$
 (b) $-\frac{1}{2}X_{g_{2}}^{af}\overset{\circ}{\underline{b}}_{p}^{-}e^{j2pf}$ (c) $-X_{g_{2}}^{af}\overset{\circ}{\underline{b}}_{p}^{-}e^{j2pf}$ (d) $-X_{g_{2}}^{af}\overset{\circ}{\underline{b}}_{p}^{-}e^{-j2pf}$

- 67. A system has poles at 0.01 Hz, 1 Hz and 80 Hz; zeros at 5 Hz, 100 Hz and 200 Hz. The approximate phase of the system response at 20 Hz is
 (a) -90°
 (b) 0°
 (c) 90°
 (d) -180°
- 68. Consider the signal flow graph shown in Figure. The gain $\frac{X_5}{X_1}$ is

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

70. The open loop transfer function of a unity feedback system is

$$G(s) = \frac{K}{s(s^2 + s + 2)(s + 3)}$$
The range of K for which the system is stable is
ATE Forum
(a) $\frac{21}{44} > K > 0$ (b) $13 > K > 0$ (c) $\frac{21}{4} < K < ¥$ (d) $-6 < K < ¥$

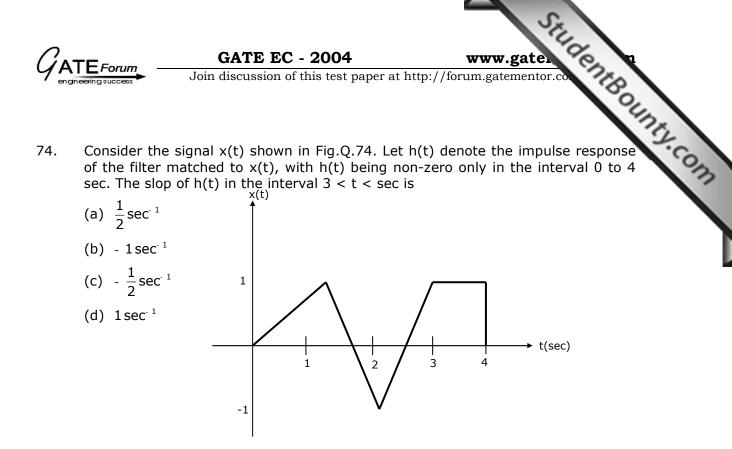
71. For the polynomial $P(s) = s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15$, the number of roots which lie in the right half of the s-plane is (a) 4 (b) 2 (c) 3 (d) 1

72. The state variable equations of a system are:

1.
$$x_1 = -3x_1 - x_2 + u$$

2. $x_2 = 2x_1$
 $y = x_1 + u$

the system is


(a) controllable but not observable

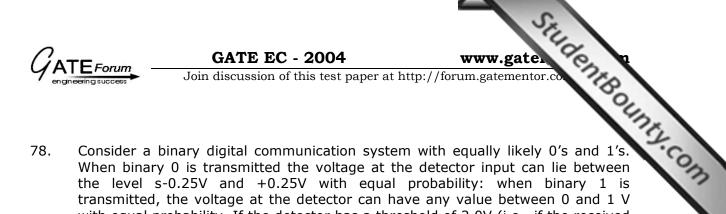
(c) neither controllable nor observable

- (b) observable but not controllable
- (d) controllable and observable

73. Given
$$A = \begin{cases} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 &$$

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

- A 1mW video signal having a bandwidth of 100 MHz is transmitted to a receiver 75. through a cable that has 40 dB loss. If the effective one-sided noise spectral density at the receiver is 10^{-20} Watt/Hz, then the signal to noise ratio at the receiver is
 - (b) 30 db (c) 40 db (d) 60 db (a) 50 db
- 76. A 100 MHz carrier of 1 V amplitude and a 1 MHz modulating signal of 1 V amplitude are fed to a balanced modulator. The output of the modulator is passed through an ideal high-pass filter with cut-off frequency of 100 MHz. The output of the filter is added with 100 MHz signals of 1 V amplitude and 90° phase shift as shown in Fig.Q.76. The envelope of the resultant signal is



77. Two sinusoidal signals of same amplitude and frequencies 10 kHz and 10.1 kHz are added together. The combined signal is given to an ideal frequency detector. The output of the detector is

(a)	0.1 kHz sinusoid	(b)	20.1 kHz sinusoid
(c)	a linear function of time	(d)	a constant

~ ~ . . .

Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

78. Consider a binary digital communication system with equally likely 0's and 1's. When binary 0 is transmitted the voltage at the detector input can lie between the level s-0.25V and +0.25V with equal probability: when binary 1 is transmitted, the voltage at the detector can have any value between 0 and 1 V with equal probability. If the detector has a threshold of 2.0V (i.e., if the received signal is greater than 0.2 V, the bit is taken as 1), the average bit error probability is

(a) 0.15 (b) 0.2 (c) 0.05 (d) 0.5

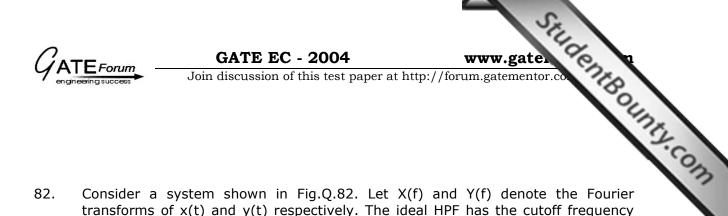
79. A random variable X with uniform density in the interval 0 to 1 is quantized as follows:

If	$0 \le X \le 0.3$,	$x_q = 0$
If	$0.3 < X \le 1$,	$x_{q} = 0.7$
Wh	ere x_{a} is the quar	ntized value of

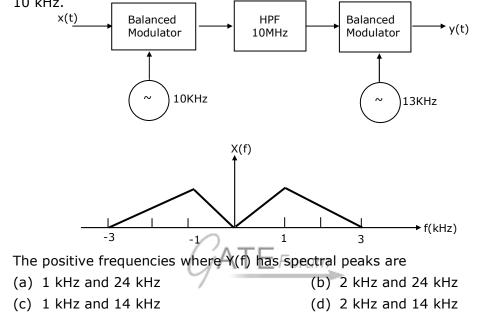
The root-mean square value of the quantization noise is

(a) 0.573	(b) 0.198	(c) 2.205	(d) 0.266
-----------	-----------	-----------	-----------

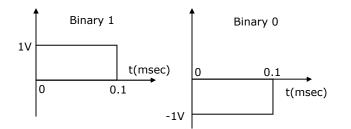
Х


).____

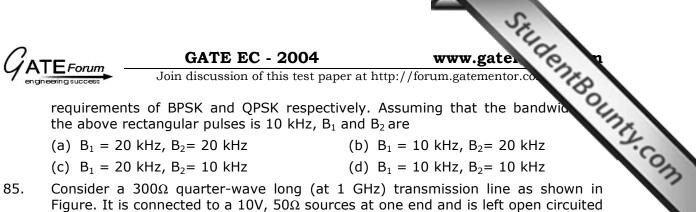
Q	n	
0	υ	


(ATE Forum		
Group 1	Group 2	
1. FM	P. Slope overload	
2. DM	Q. μ-law	
3. PSK	R. Envelope detector	
4. PCM	S. Capture effect	
	T. Hilbert transform	
	U. Matched filter	

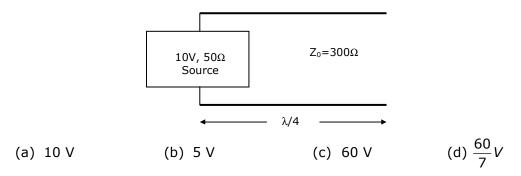
- (a) 1 T 2 P 3 U 4 S (b) 1 - S 2 - U 3 - P 4 - T (c) 1 - S 2 - P 3 - U 4 - O (d) 1 - U 2 - R 3 - S 4 - O
- 81. Three analog signals, having bandwidths 1200 Hz, 600 Hz and 600 Hz, are sampled at their respective Nyquist rates, encoded with 12 bit words, and time division multiplexed. The bit rate for the multiplexed signal is


(b) 28.8 kbps (c) 57.6 kbps (a) 115.2 kbps (d) 38.4 kbps

Consider a system shown in Fig.Q.82. Let X(f) and Y(f) denote the Fourier 82. transforms of x(t) and y(t) respectively. The ideal HPF has the cutoff frequency 10 kHz.

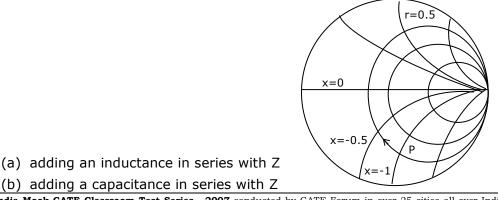


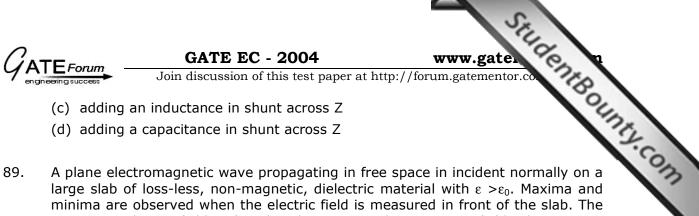
- A parallel plate air-filled capacitor has plate area of 10^{-4} m² and plate separation 83. of 10⁻³ m. It is connected to a 0.5 V, 3.6 GHz source. The magnitude of the displacement current is $\overset{a}{\underset{a}{\downarrow}}_{o} = \frac{1}{36}p^{\prime} 10^{-9}F / m_{\frac{1}{6}}^{\frac{0}{2}}$ (b) 100 mA (a) 10 mA (c) 10 A (d) 1.59 mA
- 84. A source produces binary data at the rate of 10 kbps. The binary symbols are represented as shown in Figure.


The source output is transmitted using two modulation schemes, namely Binary PSK (BPSK) and Quadrature PSK (QPSK). Let B₁ and B₂ be the bandwidth

Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

requirements of BPSK and QPSK respectively. Assuming that the bandwid the above rectangular pulses is 10 kHz, B_1 and B_2 are


- (a) $B_1 = 20 \text{ kHz}$, $B_2 = 20 \text{ kHz}$
- (b) $B_1 = 10 \text{ kHz}, B_2 = 20 \text{ kHz}$
- (c) $B_1 = 20 \text{ kHz}, B_2 = 10 \text{ kHz}$
- (d) $B_1 = 10 \text{ kHz}, B_2 = 10 \text{ kHz}$
- 85. Consider a 300 Ω quarter-wave long (at 1 GHz) transmission line as shown in Figure. It is connected to a 10V, 50Ω sources at one end and is left open circuited at the other end. The magnitude of the voltage at the open circuit end of the line is



- 86. In a microwave test bench, why is the microwave signal amplitude modulated at 1 kHz
 - (a) To increase the sensitivity of measurement
 - (b) To transmit the signal to a far-off place
 - (c) To study amplitude modulation
 - (d) Because crystal detector fails at microwave frequencies.
- If $\overset{\mathbf{w}}{E} = (\hat{a}_x + j\hat{a}_y)e^{jkz-jwt}$ and $\overset{\mathbf{w}}{H} = \underbrace{\overset{\mathbf{w}}{\xi} \overset{\mathbf{v}}{\overset{\mathbf{v}}{\underline{t}}}}_{\mathbf{w}max} (\hat{a}_y + j\hat{a}_x)e^{jkz-jwt}$, the time averaged Poynting 87.

vector is

- (a) null vector (b) $\frac{\overset{x}{c}k}{\underset{wmb}{\overset{\circ}{d}}}\hat{a}_{z}$ (c) $\frac{\overset{x}{c}2k}{\underset{wmb}{\overset{\circ}{d}}}\hat{a}_{z}$ (d) $\frac{\overset{x}{c}k}{\underset{wmb}{\overset{\circ}{d}}}\hat{a}_{z}$
- Consider an impedance Z = R + jX marked with point P in an impedance Smith 88. chart as shown in Fig.Q.88. The movement from point P along a constant resistance circle in the clockwise direction by an angle 45° is equivalent to

- (c) adding an inductance in shunt across Z
- (d) adding a capacitance in shunt across Z
- 89. A plane electromagnetic wave propagating in free space in incident normally on a large slab of loss-less, non-magnetic, dielectric material with $\varepsilon > \varepsilon_0$. Maxima and minima are observed when the electric field is measured in front of the slab. The maximum electric field is found to be 5 times the minimum field. The intrinsic impedance of the medium should be
 - (c) 600 πΩ (a) 120 πΩ (b) 60 πΩ (d) 24 πΩ
- 90. A lossless transmission line is terminated in a load which reflects a part of the incident power. The measured VSWR is 2. the percentage of the power that is reflected back is

(a) 57.73 (b) 33.33 (c) 0.11 (d) 11.11

ATEForum