CHEMISTRY

Duration: Three Hours

Read the following instruction carefully

1. This question paper contains 24 pages including blank pages for rough work. Please check all pag discrepancy, if any.
2. Write your registration number, your, name and name of the examination centre at the specified locations on th hal of the Optical Response Sheet (ORS).
3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
4. All questions in this paper are of objective type.
5. Questions must be answered on the ORS by darkening the appropriate bubble marked A, B, C, D) using HB pencil against the question number on the leff hand side of the ORS. For each question darken the double of the correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
6. There are a total of 65 questions carrying 100 marks.
7. Questions Q. 1 - Q. 25 will carry 1-mark each, and questions Q. 26 - Q. 55 will carry 2-marks each.
8. Questions Q.48- Q. 51 (2 pairs) are common data questions and question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
9. Questions Q. 56 - Q. 65 belong to General Aptitude (GA). Questions Q. $56-\mathrm{Q} .60$ will carry 1-mark each, and questions Q. 61 - Q. 65 will carry 2-marks each. The GA questions will begin on a fresh page starting from page 15.
10. Un-attempted questions will carry zero marks.
11. Wrong answers will carry NEGATIVE marks. For Q. $1-\mathrm{Q} .25$ and Q. 56 - Q. $60,1 / 3$ mark will be deducted for each wrong answer. For Q. 26 - Q. 51 and Q. 61 - Q. $65,2 / 3$ mark will be deducted for each wrong answer. The question pairs (Q.52, Q .53), and (Q.54, Q.55) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e., for Q. 52 and $\mathrm{Q} .54,2 / 3$ mark will be deducted for each wrong answer. There is no negative marking for Q. 53 and Q. 55.
12. Calculator (without data connectivity) is allowed in the examination hall.
13. Charts, graph sheets or tables are NOT allowed in the examination hall
14. Rough work can be done on the question paper itself. Additionally, blank pages are provided at the end of the question paper for rough work.

Some Useful Data

1. Physical Constants

(a) Planck Constant,

$$
\begin{aligned}
& h=6.626 \times 10^{-34} \mathrm{JS} \\
& N=6.023 \times 10^{23} \\
& c=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& R=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}=2 \mathrm{cal} \mathrm{~K}
\end{aligned}
$$

(b) Avogadro Number,
(c) Speed of light
(d) Gas constant

2. Atomic Numbers

B	5	Mn	25
Mg	12	Fe	26
p	15	Cn	77

1. The Lewis acidity of BF_{3} is less than BCl_{3} even though fluorine is more chlorine. It is due to
(a.) stronger $2 p(B)-2 p(F) \sigma$-bonding
(b.) stronger $2 p(B)-3 p(F) \pi$-bonding
(c.) stronger $2 p(B)-2 p(C l) \sigma$-bonding
(d.) stronger $2 \mathrm{p}(\mathrm{B})-3 \mathrm{p}(\mathrm{Cl}) \pi$-bonding
2. Pyroxenes are a class of silicate minerals, which exhibit a polymeric chain structure, as shown below.

$0=$ Oxygen
Its simplest rep eat unit is
(a.) $\left[\mathrm{SiO}_{4}\right]^{4-}$
(b.) $\left[\mathrm{SiO}_{3}\right]^{2-}$
(c.) $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$
(d.) $\left[\mathrm{Si}_{4} \mathrm{O}_{11}\right]^{6-}$
3. Among the following pentachlorides the one which does not exist due to the 'inert-pair effect' is
(a.) PCl_{5}
(b.) BiCl_{5}
(c.) SbCl_{5}
(d.) AsCl_{5}
4. Band theory predicts that magnesium is an insulator. However, in practice it acts as a conductor due to
(a.) presence of filled 3 s orbital
(b.) overlap of filled $2 p$ and filled 3 s orbital
(c.) overlap of filled 3 s and empty 3 p orbital
(d.) presence of unfilled 3p orbital
5. The number of 'framework electron pairs' present in the borane clustr $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ is
(a.) 10
(b.) 11
(c.) 12
(d.) 13
(a.) between 1 and 2
(b.)less than 1
(c.) unaltered
(d.) greater than 2
6. Among the following pair of metal ions present in Nature, the first one functions as transfer agent and the second one cataly zes the hy droly sis reactions The correct pair is
(a.) Fe and Zn
(b.) Mg and Fe
(c.) Co and Mo
(d.) Ca and Cu
7. Structurally nickellocene is simil ar to ferrocene. Nickellocene attains stability due to the formation of
(a.) a monocation
(b.) a dication
(c.) a monoanion
(d.) a dianion
8. The absolute configurations for compounds X and Y , respectively, are

(a.) R, S
(b.) S, R
(c.) R, R
(d.) S, S
9. In the reaction

the major product [X] is
(a.)

(b.)
CH_{3}
(c.)

(d.)

10. Among the following, a pair of resolvable configurational en antiomers is given by
(a.) cis-1,2-dimethy lcy cloheaxne
(b.) cis-1,3-dimethy lcy clohexane
(c.) cis-1,4-dimethy lcy clohexane
(d.)trans-1,3-dimethylcy clohexane
11. In the reaction

the major product $[\mathrm{X}]$ is
(a.)

(b.)

(c.)

(d.)

12. The decreasing order of isoelectric point for the following α-amino acids is Lysin Alanine Gultamic acid
(b.) $\mathrm{II}>$ I $>$ III
(c.) III $>$ I $>$ II
(d.) I $>$ III $>$ II
13. Te decreasing order of the reactivity of the following comp ounds towards electrophin

I

II

III
(a.) II $>$ I $>$ III
(b.) $\mathrm{II}>$ III $>$ I
(c.) $\mathrm{III}>$ I $>$ II
(d.) $\mathrm{I}>$ II $>$ III
14. In the reaction

the major product [X] is
(a.)

(b.)

(c.)

(d.)

15. The decreasing order of acidity of the marked \mathbf{H} of the following molecules is

(c.) $\mathrm{III}>$ II $>\mathrm{I}$
(d.) $\mathrm{II}>$ I $>$ III
16. The decreasing order of nucleophilicity for the following anions is $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}, \mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}, \mathrm{NO}_{3}^{-}$
(a.) $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{NO}_{3}^{-}$
(b.) $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
(c.) $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}>\mathrm{NO}_{3}^{-}$
(d.) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
17. The molar entropy of crystalline CO at absolute zero is
(a.) Zero
(b.) $-\mathrm{R} \ln 2$
(c.) $\mathrm{R} \ln 2$
(d.) $2 R \ln 2$
18. For an ideal gas
(a.) $(\partial P / \partial T)_{V}(\partial T / \partial V)_{P}(\partial V / \partial P)_{T}=0$
(b.) $(\partial P / \partial T)_{V}(\partial T / \partial V)_{P}(\partial V / \partial P)_{T}=-1$
(c.) $(\partial P / \partial T)_{V}(\partial T / \partial V)_{P}(\partial V / \partial P)_{T}=+1$
(d.) $(\partial P / \partial T)_{V}(\partial T / \partial V)_{P}(\partial V / \partial P)_{T}=+2$
19. Among W (work), Q (heat), U (internal en ergy) and S (entropy)
(a.) W and U are path function but Q and S are state functions
(b.) W and S are path functions but Q and U are State functions
(c.) S and U are path functions but Q and W are state functions
(d.) W and Q are path functions but U and S are state functions
20. For eigen function $\psi_{1}=\sqrt{\frac{1}{b}} \sin \left(\frac{\pi x}{b}\right)$ and $\psi_{2}=\sqrt{\frac{2}{b}} \sin \left(\frac{2 \pi x}{b}\right)$ of particle in a 1-D box of len gth $b(0 \leq x \leq b)$
(a.) ψ_{1} is normalized and orthogonal to ψ_{2}
(b.) ψ_{1} is normalized but not orthogonal to ψ_{2}
(c.) ψ_{2} is normalized and orthogonal to ψ_{1}
(d.) ψ_{2} is neither normalized nor orthogonal to ψ_{1}
21. The bond order of C_{2} molecule is
(c.) 2
(d.) 3
22. Sulfur can exist in four phases. The possible number of triple point is
(a.) 1
(b.) 2
(c.) 3
(d.) 4
23. The standard reduction potentials at 298 K for single electrons are given below:

Electrode Electrode Potential (volt)
$\mathrm{Mg}^{2+} / \mathrm{Mg} \quad-2.34$
$\mathrm{Zn}^{2+} / \mathrm{Zn} \quad-0.76$
$\mathrm{Fe}^{2+} / \mathrm{Fe}-0.44$
From this we can infer that
(a.) Zn can reduce both Mg^{2+} and Fe^{2+}
(b.) Fe can reduce both Mg^{2+} and Zn^{2+}
(c.) Mg can reduce both Zn^{2+} and Fe^{2+}
(d.) Mg can reduce Zn^{2+} and Fe^{2+}
25. For the pair of reactions given below
i) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$
ii) $\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{NH}_{3}(g)$
if at a particular temperature, $K_{P 1}$ and $K_{P 2}$ are the equilibrium constants for reaction i) and ii) respectively then,
(a.) $K_{P 1}=2 K_{P 2}$
(b.) $K_{P 1}=K_{P 2}^{2}$
(c.) $2 K_{P 1}=K_{P 2}$
(d.) $K_{P 1}^{2}=K_{P 2}$

Q.26-55 Carry two marks each

26. According to VSEPR model, the shape of $\left[\mathrm{XeOF}_{5}\right]^{-}$is
(a.) octahedral
27.

The number of unpaired electron(s) present in the species $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ 'brown ring test' is
(a.) 2
(b.) 3
(c.) 4
(d.) 5
28. $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Co}_{3} \mathrm{O}_{4}$ are metal oxides having spinel structure. Considering their CFSEs, the c statement regarding their structure is
(a.) both have normal spinel structure
(b.) both have inverse spinel structure
(c.) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ has normal and $\mathrm{Co}_{3} \mathrm{O}_{4}$ has inverse spinel structure
(d.) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ has inverse and $\mathrm{Co}_{3} \mathrm{O}_{4}$ has normal spinel structure
29. The mechanism of the reaction between $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}(\mathrm{bpy})_{3}\right]^{3+}$ (bpy $=2,2$-bipy ridine) is
(a.) outer-sp here electron-transfer
(b.)inner-sphere electron-transfer
(c.) self-exchange reaction
(d.)ligand-exchange followed by electron-transfer
30. The d-d absorption band of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is split due to
(a.) presence of octahedral geometry
(b.) static Jahn-Teller distortion
(c.) dy namic Jahn-Teller distortion
(d.) presence of trigonal bipy ramidal geometry
31. The cry stal-field sy mbol for the ground-state of $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$ is
(a.) ${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$
(b.) ${ }^{1} \mathrm{~A}_{1 g}$
(c.) ${ }^{5} \mathrm{E}_{\mathrm{g}}$
(d.) ${ }^{6} \mathrm{~A}_{1 \mathrm{~g}}$
32. In the following reactions:

the reagent/conditions X and Y are
(a.) $\mathrm{X}=\mathrm{BF}_{3} ; \mathrm{Y}=$ heating at $1250^{\circ} \mathrm{C}$
(b.) $\mathrm{X}=\mathrm{NaF} ; \mathrm{Y}=$ heating at $250^{\circ} \mathrm{C}$
(c.) $\mathrm{X}=\mathrm{NH}_{4} \cdot \mathrm{Y}=\mathrm{HCl}$
$\left[\mathrm{CoCl}_{4}\right]^{2-}$ is a blue coloured complex. Controled-treatment of this ©ontp isomeric light pink coloured complexes of composition $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]$.
Identify the correct point groups for $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and two isomeric complexes $[\mathrm{Co}$
(a.) $\mathrm{D}_{4 \mathrm{~h}}$ and $\left(\mathrm{C}_{2 \mathrm{v}}\right.$ and $\left.\mathrm{C}_{2 \mathrm{~h}}\right)$
(b.) T_{d} and $\mathrm{C}_{2 \mathrm{v}}$ and $\mathrm{D}_{4 \mathrm{~h}}$)
(c.) $\mathrm{D}_{4 \mathrm{~h}}$ and $\left(\mathrm{C}_{2 \mathrm{v}}\right.$, and $\left.\mathrm{D}_{4 \mathrm{~h}}\right)$
(d.) T_{d} and $\left(\mathrm{C}_{2 \mathrm{v}}\right.$ and $\left.\mathrm{C}_{4 \mathrm{v}}\right)$
34. In the reaction

the major product $[\mathrm{X}]$ is
(a.)

(b.)

(c.)

(d.)

35. In the reaction

the major product $[\mathrm{X}]$ is

(b.)

(c.)

(d.)

36. In the following reaction sequence

the major product [X] is
(a.)

(b.)

(c.)

37. In the reactions

the major product $[\mathrm{X}]$ and [Y], respectively, are
(a.)

(b.)

(c.)

(d.)

and

38. In the reaction

the major product [X] is
(a.)

(b.)

(c.)

(d.)

39. In the reaction sequence

the major product [X] and [Y], respectively, are
(a.)

(b.)

(c.)

(d.)

40
The change in entropy when two moles of Argon gas are heated 500 K is
(a.) $-12.74 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}$
(b.) $-6.37 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}$
(c.) $6.37 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}$
(d.) $12.74 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}$
41. At any temperature T, the fugacity coefficient (γ) is given by
$\ln \gamma=\int_{0}^{P} \frac{Z-1}{P^{\prime}} d P^{\prime}$
where Z is the compressibility factor. The fugacity coefficient of a real gas governed by equation of state $P(V-b)=R T$ with b a constant is given by
(a.) $\frac{R T}{b P}$
(b.) $e^{\frac{R T}{b P}}$
(c.) $\frac{b P}{R T}$
(d.) $e^{\frac{b P}{R T}}$
42. The specific rate constant of decomposition of a compound is represented by $\ln k=5.0-\frac{12000}{T}$

The activation energy of decomposition for this compound at 30 bK is
(a.) $24 \mathrm{kcal} / \mathrm{mole}$
(b.) $12 \mathrm{kcal} / \mathrm{mole}$
(c.) $24 \mathrm{cal} / \mathrm{mole}$
(d.) $12 \mathrm{cal} / \mathrm{mole}$
43. The commutator $\left[x^{3}, p_{x}\right]$ is equal to
(a.) $-\frac{3 h x^{2}}{2 \pi i}$
(b.) $\frac{h x}{2 \pi i}$
(c.) $\frac{h x^{2}}{2 \pi i}$
$3 h r^{2}$

44
An electron of mass ' m ' is confined to a one dimensional box of foryo
akes a radiative transition from second excited state to the ground state, the frequency of th
(a.) $\frac{9 h}{8 m b^{2}}$
(b.) $\frac{3 h}{8 m b^{2}}$
(c.) $\frac{h}{m b^{2}}$
(d.) $\frac{2 h}{m b^{2}}$
45. The point group of ClF_{3} molecule and its corresponding number of irreducible representations are respectively
(a.) $\mathrm{C}_{3 \mathrm{v}}$ and 4
(b.) $\mathrm{C}_{2 \mathrm{v}}$ and 4
(c.) $\mathrm{C}_{3 \mathrm{v}}$ and 3
(d.) $\mathrm{C}_{2 \mathrm{v}}$ and 3
46. The most populated rational state for $\mathrm{HCl}\left(\mathrm{B}=8.5 \mathrm{~cm}^{-1}\right)$ at 300 K is
(a.) 2
(b.) 3
(c.) 5
(d.) 7
47. The ratio of life times of two states that give rise to line widths of $1.0 \mathrm{~cm}^{-1}$ and $0.2 \mathrm{~cm}^{-1}$ respectively is
(a.) $1: 2$
(b.) $1: 5$
(c.) $2: 1$
(d.) $5: 1$

Common Data Questions

Common Data for Questions 48 and 49:

A six-coordinate transition metal complex is ESR and Mossbauer active. The effective magnetic moment of this complex is ~ 5.9 B.M.
48. The metal-ion along with its oxidation state and the number of unpaired electron present are
(c.) $\mathrm{Fe}(\mathrm{III})$ and 1
(d.) Fe (III) and 5
49. The complex is
(a.) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(b.) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(c.) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(d.) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Common Data for Questions 50 and 51:

An organic compound $[\mathrm{X}]\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\right)$ exhibits the following spectral data
IR: $\sim 1720 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR: $2.35(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, 2 \mathrm{H}), 4.42(\mathrm{t}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}$
The compound $[\mathrm{X}]$ with an excess of MeMgBr gives a $1: 1$ mixture of compound $[\mathrm{Y}]$ and $[\mathrm{Z}]$. The compound $[\mathrm{Z}]$ exhibits the following ${ }^{1} \mathrm{H}$ NMR data: $2.0(\mathrm{bs}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}), 3.70(\mathrm{t}, 2 \mathrm{H})$
50. The compound [X] is
(a.)

(b.)

(c.)

(d.)

51. The compound [Y] is
(a.)
(b.)

(c.)

(d.)

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:
In the reaction sequence

$$
[x] \xrightarrow{\text { i. } \frac{\text { TsClVPy }}{\text { NaOEVEtOH }}} \text { [z] }
$$

52. The compound [X] is
(a.)

(b.)

(c)

(d.)

53. The compound [Z] is
(a.)

(b.)

(c.)

(d.)

Statement for Linked Answer Questions 54 and 55:

In the μ vs. T diagram for different phases of the same substance at one atmospheric pressure, the lines A, B and C compound to

T
54. Based on the above diagram:
(a.) A represents the change in chemical potential as a function of temperature for the solid phase, B for the liquid and C for the gas
(b.) A represents the change in chemical potential as a function of temperature for the liquid phase, B for the gas and C for the solid
(c.) A represents the change in chemical potential as a function of temperature for the gas phase, B for the liquid and C for the solid
(d.) A represents the change in chemical potential as a function of temperature for the gas phase, B for solid and C for the liquid.
55. From the same diagram
(a.) D represents boiling point, E sublimation point and F melting point
(b.) B rep resents boiling point, D sublimation point and F melting point
(c.) B rep resents melting point, F sublimation point and D boiling point
(d.)D represents melting point, F boiling point and B sublimation point

General Aptitude (GA) Questions

56. 25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing either hockey nor football is :
(a.) 2
(b.) 17
(c.) 13
(d.) 3
57. Choose the most appropriate word from the options given below to complete the following sentence:

If we manage to \qquad our natural resources, we would leave a better planet or our children.
(a.) uphold
(b.)restrain
58. The question below consists of a pair of related words followed pair that best expresses the relation in the original pair.

Unemployed : Worker

(a.) fallow : land
(b.) unaware : sleeper
(c.) wit : jester
(d.)renovated : house
59. Which of the following options is the closest in meaning to the word below:

Circuitous

(a.) cy clic
(b.) indirect
(c.) confusing
(d.) crooked
60. Choose the most' appropriate word from the options given below to complete the following sentence:

His rather casual remarks on politics \qquad his lack of seriousness about the subject.
(a.) masked
(b.) belied
(c.) betray ed
(d.) suppressed

Q.61-Q. 65 carry two marks each:

61. Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on $1^{\text {st }}$ January. The age difference between any two successive siblings (that is born one after another is less than 3 y ears. Given the following facts:
i. Hari's age + Gita's age $>$ Irfan's age + Saira's age
ii. The age difference between Gita and Saira is 1 y ear. However, Gita is not the oldest and Saira is not the y oungest
iii. There are no twins.

In what order were they born (oldest first)?
(a.) HSIG
(b.) SGHI
(c.) IGSH
(d.)IHSG
(a.) 20 day s
(b.) 18 day s
(c.) 16 day s
(d.) 15 day s
63. Modern warfare has changed from large scale clashes of armies to suppression populations. Chemical agents that do their work silently appear to be suited to such and regretfully, there exist people in military establishments who think that chemical are useful tools for their cause.
Which of the following statements best sums up the meaning of the above passage:
(a.) Modern warfare has resulted in civil strife
(b.) Chemical agents are useful in modern warfare
(c.) Use of chemical agents in warfare would be undesirable
(d.) People in military establishments like to use chemical agents in war.
64. Given digits $2,2,3,3,3,4,4,4,4$ how many distinct 4 digit numbers greater than 3000 can be formed?
(a.) 50
(b.) 51
(c.) 52
(d.) 54
65. If $137+276=435$ how much is $731+672$?
(a.) 534
(b.) 1403
(c.) 1623
(d.) 1513

