Student Bounts, com

MATHEMATICS HSSC-II

SECTION - A (Marks 20)

Time a	llowed:	25	Minutes
--------	---------	----	---------

Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the NOTE:question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q. 1	Circle the correct	option i.e.	A /	B/(:/D	Fach	nart	carries	one mark	ò

(i)	What is the limit of the function	lim	x^2 -	- 25	5
	virial is the limit of the function			5	

What is the domain of the function $f(x) = \frac{x-1}{x-4}$?

(iii) For what value of a and b, the function f(x) = ax + b, will become a constant function?

a = 1, b = 1 B. $a \neq 0, b = 1$ C. a = 1, b = 0

 $a=0, b\neq 0$

What is the derivative of cosec x?

 $-\cot^2 x$

B. $-\cos ec x \cot x$

 $-\cot x$

D.

The derivative of strictly decreasing function is always

Negative

B.

C Zero

Both Positive and Negative

(vi) If
$$f(x) = a \sin 3x$$
 and $f'\left(\frac{\pi}{3}\right) = 6$, then what is the value of a ?

What is the integral of $\sec x$?

 $\sec x \tan x + c$

 $-\sec x \tan x + c$

 $\ln(\sec x + \tan x) + c$

D. $\ln(\sec x - \tan x) + c$

(viii) What is the value of
$$\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx?$$

Which is the solution of the equation $\frac{dy}{dx} = -y$?

 $y = ce^{\frac{1}{2}x}$ B. $y = ce^{-\frac{1}{2}x}$ C. $y = ce^{-x}$ D.

For what value of a, the point (2, -3) is the mid-point of the line segment joining the points A(1, a), B(3, 2a)?

DO NOT WRITE ANYTHING HERE

Student Bounty.com

(xi) If two lines with slopes m_1 and m_2 are parallel to each other, then which is correct?

A.
$$m_1 = m_2$$
 B. $m_1 = -m_2$ C. $m_1 = \frac{1}{m_2}$ D. $m_1 = -\frac{1}{m_2}$

(xii) If
$$ax^2 + 2hxy + by^2 = 0$$
 represents two lines, then the lines are said to be orthogonal if

A.
$$a+b=0$$
 B. $a-b=0$ C. $h=a+b$

(xiii) What is the distance of the point
$$(2, -3)$$
 from y-axis?

(xiv) At which point, does the function
$$f(x, y) = 3x + 2y$$
 have minimum value?

(xv) What is the length of latus rectum of the parabola
$$4y^2 = -64x$$
?

(xvi) What is the centre of the circle
$$3x^2 + 3y^2 - 12x + 15y + 7 = 0$$
?

A.
$$(12, -15)$$
 B. $(-12, 15)$ C. $(2, -\frac{5}{2})$ D. $(-2, \frac{5}{2})$

A.
$$e=1$$
 B. $e=0$ C. $e>1$ D. $e<1$ The point $P(x_1, y_1)$ lies outside the circle $x^2+y^2+2gx+2fy+c=0$ if:

A.
$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > 0$$
 B. $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$

C.
$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c < 0$$
 D. None of these

(xix) Which of the following triples can be the direction angles of a single vector?

c.
$$45^{\circ}$$
, 60° , 60° D. 30° , 45° , 45°

(xx) For what value of α , the vectors $\vec{w} = \alpha \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{v} = \hat{i} + \alpha \hat{j} + 3\hat{k}$ are perpendicular to each other?

For Examiner's use only:

-----2HA 1111 (L) -----

MATHEMATICS HSSC-II

Student Bounty.com

Time allowed: 2:35 Hours

Total Marks Sections B and C:

Answer any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

(i) Determine whether the function
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$
, is even or odd.

(ii) Evaluate
$$\lim_{x\to 0} \frac{\sqrt{x+a}-\sqrt{a}}{x}$$

(iii) If
$$y = x^4 + 2x^2 + 2$$
, then prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

(iv) Find
$$\frac{dy}{dx}$$
 if $xy + y^2 = 2$

(v) Find
$$\frac{dy}{dx}$$
 if $y = (x+1)^x$

(vi) Evaluate
$$\int \ln x \ dx$$

(vii) Evaluate
$$\int_{2}^{\sqrt{5}} x \sqrt{x^2 - 1} \ dx$$

(viii) Find the area between x-axis and the curve
$$y = x^2 + 1$$
, from $x = 1$ to $x = 2$.

(ix) Show that the points
$$A(3, 1)$$
, $B(-2, -3)$ and $C(2, 2)$ are the vertices of an isosceles triangle.

(x) Find an equation of the line passing through the point
$$(5, -8)$$
 and is perpendicular to the join of $A(-15, -8)$ and $B(10, 7)$

(xi) Find the centre and radius of the circle
$$4x^2 + 4y^2 - 8x + 12y - 25 = 0$$

(xii) Find the equations of the tangents to the circle
$$x^2 + y^2 = 2$$
, being perpendicular to the line $3x + 2y = 6$.

(xiii) Find the points of intersection of the conics
$$3x^2 - 4y^2 = 12$$
 and $3y^2 - 2x^2 = 7$.

(xiv) A particle, acted upon by the forces
$$4\hat{i}+\hat{j}-3\hat{k}$$
 and $3\hat{i}-\hat{j}-\hat{k}$, is displaced from the point $A(1, 2, 3)$ to $B(5, 4, 1)$. Find the work done.

SECTION - C (Marks 40)

Note:-Attempt any FIVE questions. All questions carry equal marks. $(5 \times 8 = 40)$

Q. 3 Prove that
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

Q. 4 If
$$y = a \cos(\ln x) + b \sin(\ln x)$$
, then show that $x^2 y_2 + xy_1 + y = 0$

Q. 5 Evaluate
$$\int \sqrt{4-5x^2} \ dx$$

Q. 6 Find an equation of the line passing through the point of intersection of the lines
$$x + 2y + 3 = 0$$
 and $3x + 4y + 7 = 0$ and making equal intercepts on the axes.

Q. 7 Minimize the function
$$f(x, y) = 2x + 3y$$
, subject to the constraints $3x + 4y \le 12$, $2x + y \le 4$, $4x - y \le 4$, $x \ge 0$; $y \ge 0$ (Use graph paper)

Q. 8 Find equation of the ellipse as locus of points
$$P(x, y)$$
 such that the sum of the distances from P to the fixed points $F(0, 0)$ and $F'(1, 1)$ is 2

Q. 9 Use vectors to prove that
$$b^2 = c^2 + a^2 - 2ca \cos B$$