Additional Mathematics

ADVANCED FSMQ 6993

Mark Scheme for the Unit

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

MARK SCHEME FOR THE UNIT
Unit/Content Page
6993 Additional Mathematics 4
Grade Thresholds 10

6993 Additional Mathematics

Section A

Q.		Answer	Marks	Notes
1	(i)	$\begin{aligned} & v=u+a t \text { with } v=0, u=30, t=10 \\ & \Rightarrow 10 a=-30 \\ & \Rightarrow a=-3 \end{aligned}$ Deceleration is $3 \mathrm{~ms}^{-2}$	M1 A1 2	Must be used $a=3$ or decel $=-3$ are wrong
	(ii)	E.g. $v^{2}=u^{2}+2 a s$ with $v=0, u=30, a=-3$ $\begin{aligned} & \Rightarrow 6 s=900 \\ & \Rightarrow s=150 \end{aligned}$ Distance is 150 m Alternatives: $\begin{aligned} & \mathrm{s}=\left(\frac{u+v}{2}\right) t \text { with } v=0, u=30, t=10 \\ & \Rightarrow s=15 \times 10=150 \end{aligned}$ Or: $\begin{aligned} & \mathrm{s}=u t+\frac{1}{2} a t^{2} \text { with } u=30, t=10, a=-3 \\ & \Rightarrow s=300-150=150 \end{aligned}$ Or: $\begin{aligned} & \mathrm{s}=v t-\frac{1}{2} a t^{2} \text { with } v=0, t=10, a=-3 \\ & \Rightarrow s=0-(-150)=150 \end{aligned}$	M1 A1 2	Allow alternatives
2	(i)	$\begin{aligned} & \frac{x}{6}+\frac{y}{8}=1 \\ & \Rightarrow 4 x+3 y=24 \end{aligned}$ Any correct equation will do. Usual answer $y=-\frac{4}{3} x+8$ SC. Omission of $y=$: give M1 A0	B1 soi M1 A1 isw 3	Gradient Any valid method In form $a x+b y=c$ N.B. Drawing of graph is 0 .
	(ii)	Midpoint is $(3,4)$ Gradient is $\frac{3}{4}$ \Rightarrow equation is $y-4=\frac{3}{4}(x-3)$ $\Rightarrow 4 y=3 x+7$ SC. Omission of $y=$: give M1 A0	B1 soi E1 M1 A1 4	-ve reciprocal of their gradient Use their gradient plus their midpoint In form $a x+b y=c$ N.B. Drawing of graph is 0 .

Q.		Answer	Marks	Notes
3		$\begin{aligned} & x^{2}+(5 x+13)^{2}=13 \\ & \Rightarrow x^{2}+25 x^{2}+130 x+169-13=0 \\ & \Rightarrow 26 x^{2}+130 x+156=0 \\ & \Rightarrow x^{2}+5 x+6=0 \\ & \Rightarrow(x+2)(x+3)=0 \Rightarrow x=-2,-3 \\ & \Rightarrow y=3,-2 \\ & \Rightarrow \text { Points of intersection }(-2,3),(-3,-2) \end{aligned}$ SC: For each pair obtained from accurate graph or table of values, or trial, B1	M1 A1 soi M1 A1 A1 5	Attempt at substitution. Expansion of $(5 x+13)^{2}$ Solve 3 term quadratic Either both x or one pair Either both y or other pair
4	(i)	$\left(\frac{7}{10}\right)^{5} \approx 0.168$	$$	p and power Ans
	(ii)	$\binom{5}{3}\left(\frac{7}{10}\right)^{3}\left(\frac{3}{10}\right)^{2} \approx 0.3087$ 0 if more than one Allow 3, 4 or 5 sig figs in both parts term	$\begin{array}{\|ll} \hline \text { B1 soi } \\ \text { B1 } & \\ \text { B1 } & \\ & 3 \end{array}$	coeff powers mult (p correct) ans
5	(i)	$y=x^{3}-3 x+1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-3$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x= \pm 1$, giving $(1,-1)$ and $(-1,3)$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x$; when $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$ giving minimum at $x=1$ when $x=-1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0$ giving maximum at $x=-1$ Any alternative method OK.	B1 M1 A1 A1 M1 A1 6	Correct derivative Setting their derivative $=0$ Both x or one pair Both y or other pair (y values could be seen in (ii)) Identify one turning point Both correct
	(ii)	 Curve to be consistent in (i)	E1	General shape including axes and turning points At their x values. (but don't worry about intercepts on the axes.) This does require a scale on the x axis.

Q.		Answer	Marks	Notes
6	(i)	$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=0.72 t-0.072 t^{2}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & 3 \\ \hline \end{array}$	Diffn Each term
	(ii)	$\begin{aligned} & s=\int_{0}^{10}\left(0.36 t^{2}-0.024 t^{3}\right) \mathrm{d} t=\left[0.12 t^{3}-0.006 t^{4}\right]_{0}^{10} \\ & =120-60=60 \mathrm{~m} \end{aligned}$ N.B. Watch $s=\left(\frac{0+12}{2}\right) 10=60$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ \hline \end{array}$	Int the given fn Both terms Deal with def.int
7	(i)	$\frac{\mathrm{AC}}{\mathrm{VC}}=\tan 40 \Rightarrow \mathrm{AC}=10 \tan 40=8.39 \mathrm{~m}$ Alt forms for AC acceptable. i.e. $\mathrm{AC}=\frac{10 \sin 40}{\sin 50}=\frac{10}{\tan 50}$	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 \end{array}$	Tan function Correct
	(ii)	$\begin{aligned} & \text { Angle } \mathrm{C}=180-50-60=70 \\ & \Rightarrow \frac{\mathrm{AB}}{\sin \mathrm{C}}=\frac{\mathrm{AC}}{\sin \mathrm{~B}} \\ & \Rightarrow \mathrm{AB}=8.39 \times \frac{\sin 70}{\sin 60}=9.10 \mathrm{~m} \end{aligned}$	$\begin{array}{lll}\text { B1 } & \\ \text { M1 } & \\ \text { F1 } & \\ & \\ \text { A1 } & \\ & 4\end{array}$	To find $A B$ Must be 3 s.f.
8	(i)	$\begin{aligned} & 2\left(1-\sin ^{2} x\right)=5 \sin x-1 \\ & \Rightarrow 2 \sin ^{2} x+5 \sin x-3=0 \end{aligned}$	M1 A1 2	Use of pythag.to change $\cos ^{2}$ All working answer given
	(ii)	$\begin{aligned} & (2 \sin x-1)(\sin x+3)=0 \\ & \Rightarrow \sin x=\frac{1}{2} \\ & \Rightarrow x=30^{\circ}, 150^{\circ} \end{aligned}$ SC. $\sin x=-\frac{1}{2} \Rightarrow x=210,330 \quad$ M1 A0 A0 F1	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { A1 } & \\ \text { F1 } & \\ & 4 \end{array}$	Solve quad in $\sin x$ or s etc $1 / 2$ seen 30 seen 180 - ans (only one extra angle)
9		3 roots are 1, 2, 13 - allow $\pm 1, \pm 2, \pm 13$ Equation is $(x-1)(x-2)(x-13)=0$ Giving $x^{3}-16 x^{2}+41 x-26=0$ i.e. $a=-16, b=41$ (Can be seen in cubic. Alternative method. $\begin{array}{ll} \mathrm{f}(1)=0 \Rightarrow a+b=25 & \mathrm{~B} 1 \\ \mathrm{f}(2)=0 \Rightarrow 4 a+2 b=18 & \mathrm{~B} 1 \end{array}$ Solve to give a and b M1 A1, A1	B1 soi B1 M1 A1 A1 isw	Factor form. Condone no $=0$ Expand to give cubic

Section B

Q.		Answer	Marks	Notes
10	(i)	$\frac{140}{v}, \frac{140}{v+5}$	$\begin{array}{\|r\|} \hline \text { B1 B1 } \\ 2 \end{array}$	
	(ii)	$\begin{aligned} & \text { Gavin's time minus Simon's time is } 15 \text { mins }=\frac{1}{4} \mathrm{hr} \\ & \quad \Rightarrow \frac{140}{v}-\frac{140}{v+5}=\frac{1}{4} \\ & \quad \Rightarrow 4(140(v+5)-140 v)=v(v+5) \\ & \quad \Rightarrow 2800=v(v+5) \Rightarrow v^{2}+5 v-2800=0 \end{aligned}$	B1 B1 M1 A1 soi A1 5	$1 / 4 \mathrm{hr}$ Subtract Clear fractions 700
	(iii)	$\begin{aligned} v= & \frac{-5 \pm \sqrt{25+4 \times 2800}}{2} \approx 50.47 \text { or } 50.5 \\ & \Rightarrow \text { Gavin: } 2.77 \mathrm{hrs}, \text { Simon } 2.52 \mathrm{hrs} \\ \Rightarrow & \text { Gavin takes } 2 \mathrm{hrs} 46 \text { mins }(166 \mathrm{mins}) \\ & \text { Simon takes } 2 \mathrm{hrs} 31 \mathrm{mins}(151 \mathrm{mins}) \end{aligned}$ SC For $v=50 \Rightarrow 168,153$ give full marks but -1 tfsf	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { F1 } & \\ & 5 \end{array}$	Solve in decimals (ignore anything else) Convert (only one needs to be seen) Or give B 1 for both in decimals This is for one 15 less than the other

Q.		Answer	Marks	Notes
11	(i)	$2=16 \lambda \Rightarrow \lambda=\frac{1}{8}$	$\begin{array}{\|ll} \hline \text { B1 } & \\ & 1 \end{array}$	
	(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{8} \cdot 2 x=\frac{x}{4}$ When $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ \Rightarrow Tangent at T is $y-2=1(x-4)$ $\Rightarrow y=x-2$ When $y=0, x=2$ So B is $(2,0)$	E1 M1 A1 DM1 A1 A1 6	Correct derivative from their λ or leaving it in Sub $x=4$ (numeric gradient to give tangent)
	(iii)	Area under curve $=\int_{0}^{4} \frac{x^{2}}{8} \mathrm{~d} x=\left[\frac{x^{3}}{24}\right]_{0}^{4}$ Area of triangle $=2$ Shaded area $=\left[\frac{x^{3}}{24}\right]_{0}^{4}-2=2 \frac{2}{3}-2=\frac{2}{3}$ N.B. Area under (curve - line) from 0 to 4 M1 A1 only	M1 A1 B1 M1 A1 5	Int. Function Sub limits for int and subtract triangle

Q.		Answer	Marks	Notes
12	(i)	Worker hours for tables $=12 x$ Worker hours for chairs $=6 y$ $\Rightarrow 12 x+6 y \leq 24 \times 40=960 \Rightarrow 2 x+y \leq 160$	M1 A1 2	Must see $12 x$ and $6 y$
	(ii)	$\begin{aligned} & 30 x+10 y \leq 1800 \\ & (\Rightarrow 3 x+y \leq 180) \\ & y \geq 3 x \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ & 3 \\ \hline \end{array}$	Does not have to be simplified
	(iii)	 N.B. Intercepts on axis must be seen N.B. Ignore $<$ instead of \leq	B1 B1 E1 E1	Each line For $y \geq 3 x$ Must be a region including the y axis as boundary
	(iv)	We wish to maximise the profit. Profit per table $=20$, profit per chair $=5$ i.e. $P=20 x+5 y$	B1	Something that connects 20 with x
	(v)	Greatest profit will occur where the lines $y=3 x$ and $3 x+y=180$ intersect. This is at $(30,90)$. Allow even if shading for $y \geq 3 x$ is wrong. SC: Trying all corners without the corect answers B1 SC: Drawing an O.F. line without the right answer B1	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ & 2 \end{array}$	$\begin{aligned} & 30 \pm 2 \\ & 90 \pm 2 \end{aligned}$ But answers must be integers.

13	(i)	Angles on straight line means $\alpha=180-\beta$ And $\cos (180-\beta)=-\cos \beta$	B1 B1 2	Must make reference to the figure of the question
	(ii)	$\begin{aligned} \cos \alpha & =\frac{x^{2}+(a / 2)^{2}-c^{2}}{2 \cdot(a / 2) x} \\ & =\frac{x^{2}+\frac{1}{4} a^{2}-c^{2}}{a x}=\frac{4 x^{2}+a^{2}-4 c^{2}}{4 a x} \end{aligned}$	M1 A1 2	Correct cosine formula. Condone missing brackets.
	(iii)	$\begin{aligned} & \cos \beta=\frac{4 x^{2}+a^{2}-4 b^{2}}{4 a x} \\ & \text { N.B. also }-\frac{4 x^{2}+a^{2}-4 c^{2}}{4 a x} \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \\ \hline \end{array}$	
	(iv)	$\begin{aligned} & \frac{4 x^{2}+a^{2}-4 b^{2}}{4 a x}=-\frac{4 x^{2}+a^{2}-4 c^{2}}{4 a x} \\ & \Rightarrow 4 x^{2}+a^{2}-4 b^{2}=-\left(4 x^{2}+a^{2}-4 c^{2}\right) \\ & \Rightarrow 4 x^{2}+a^{2}-4 b^{2}=-4 x^{2}-a^{2}+4 c^{2} \\ & \Rightarrow 8 x^{2}+2 a^{2}=4\left(b^{2}+c^{2}\right) \\ & \Rightarrow 4 x^{2}+a^{2}=2\left(b^{2}+c^{2}\right) \end{aligned}$	M1 M1 A1 M1 A1 5	Use of (i), (ii) and (iii) Clear fractions Simplify
	(v)	$a=46, b=29, c=27$ gives $4 x^{2}+46^{2}=2\left(29^{2}+27^{2}\right)$ gives $x^{2}=256$ i.e. $x=16$ S.C. Use of cosine formula in large triangle to get an angle $(\mathrm{C}=36.2, \mathrm{~B}=33.4)$ Then use of cosine formula in small triangle to get $x=16 \mathrm{M} 1, \mathrm{~A} 1$ only if the answer is 16 . SC: Scale drawing gets 0 .	M1 A1 2	Can be substituted in any order

Grade Thresholds

FSMQ Advanced Mathematics 6993
June 2008 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	A	B	C	D	E	U
$\mathbf{6 9 9 3}$	100	68	58	48	38	29	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{6 9 9 3}$	26.4	36.7	46.5	56.0	64.7	100	7261

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

