

Additional Mathematics

ADVANCED FSMQ 6993

Mark Scheme for the Unit

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

MARK SCHEME FOR THE UNIT

Unit/Content	Page
6993 Additional Mathematics	4
Grade Thresholds	10

6993 Additional Mathematics

Section A

Q.		Answer	Marks	Notes
1	(i)	v = u + at with $v = 0, u = 30, t = 10$	M1	Must be used
		$\Rightarrow 10a = -30$		a = 2 or decel = -2 or -2
		$\Rightarrow a = -3$	A1	a = 3 or decel = -3 are wrong
		Deceleration is 3 ms^{-2}	2	wieng
	(ii)	E.g. $v^2 = u^2 + 2as$ with $v = 0, u = 30, a = -3$	M1	
		$\Rightarrow 6s = 900$		
		$\Rightarrow s = 150$		
		Distance is 150 m	A1	
		Alternatives:	2	Allow alternatives
		$s = \left(\frac{u+v}{2}\right)t \text{ with } v = 0, u = 30, t = 10$		
		$\Rightarrow s = 15 \times 10 = 150$		
		Or:		
		$s = ut + \frac{1}{2}at^2$ with $u = 30, t = 10, a = -3$		
		$\Rightarrow s = 300 - 150 = 150$		
		Or:		
		$s = vt - \frac{1}{2}at^2$ with $v = 0, t = 10, a = -3$		
		$\Rightarrow s = 0 - (-150) = 150$		
2	(i)	$\frac{x}{6} + \frac{y}{8} = 1$	B1 soi	Gradient
			M1	Any valid method
		$\Rightarrow 4x + 3y = 24$	1,11	They valid motion
		Any correct equation will do. 4	A1 isw	In form $ax + by = c$
		Usual answer $y = -\frac{4}{3}x + 8$	3	N.B. Drawing of graph is 0.
		SC. Omission of $y = :$ give M1 A0		15 0.
	(ii)			
		Midpoint is (3, 4)	B1 soi	
		Gradient is $\frac{3}{4}$	E1	-ve reciprocal of their
		7		gradient
		\Rightarrow equation is $y-4=\frac{3}{4}(x-3)$	M1	Use <i>their</i> gradient plus <i>their</i> midpoint
		$\Rightarrow 4y = 3x + 7$	A1	In form $ax + by = c$
		SC. Omission of $y = :$ give M1 A0	4	N.B. Drawing of graph is 0.
				15 0.

Q.		Answer		Marks	Notes		
Q. 3		$x^{2} + (5x + 13)^{2} = 13$		M1	Attempt at substitution.		
		$\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$		A1 soi	Expansion of $(5x + 13)^2$		
		$\Rightarrow 26x^2 + 130x + 156 = 0$	$26x^2 + 130x + 156 = 0$				
		$\Rightarrow x^2 + 5x + 6 = 0$					
		$\Rightarrow (x+2)(x+3) = 0 \Rightarrow x = -2, -3$		M1	Solve 3 term quadratic		
		\Rightarrow y = 3, -2		A1	Either both x or one pair		
		\Rightarrow Points of intersection (-2,3),(-3)	,-2)	A1	Either both y or other		
		SC: For each pair obtained from acc		5	pair		
4	(i)	or table of values, or trial, B1		B1 soi	p and power		
-	(1)	$\left(\frac{7}{10}\right)^5 \approx 0.168$		B1 SOI	Ans		
	(2	<u> </u>		
	(ii)	$\binom{5}{3} \left(\frac{7}{10}\right)^3 \left(\frac{3}{10}\right)^2 \approx 0.3087$	0 if more	B1 soi B1	coeff powers mult (<i>p</i> correct)		
			than one term	B1	ans		
		Allow 3, 4 or 5 sig figs in both parts Apply tmsf or tfsf otherwise.	lenn	3			
5	(i)	$y = x^3 - 3x + 1 \Longrightarrow \frac{dy}{dx} = 3x^2 - 3$		B1	Correct derivative		
		u.		M1	Setting their derivative $= 0$		
		$\frac{dy}{dx} = 0$ when $x = \pm 1$, giving $(1, -1)$ ar	nd (-1,3)	A1	Both <i>x</i> or one pair		
				A1	Both y or other pair		
		$\frac{d^2 y}{dx^2} = 6x$; when $x = 1, \frac{d^2 y}{dx^2} > 0$	$=1, \frac{d^2 y}{dx^2} > 0$		(y values could be seen in (ii))		
		giving minimu	giving minimum at $x = 1$				
		when $x = -1$, $\frac{d^2 y}{dx^2} < 0$ giving maximu	matr−_1	A1	Identify one turning point		
		dx^2 dx ²	$\lim u x = 1$				
		Any alternative method OK.		6	Both correct		
		,					
	(ii)	4 y			General shape		
				E1	including axes and turning points		
		/ 1/			At <i>their x</i> values.		
				(but don't worry about intercepts on the axes.)			
				This <i>does</i> require a			
		-2		-	scale on the x axis.		
		-3		1			
		Curve to be consistent in (i)					
		Curve to be consistent in (i)					

Mark Scheme

Q .		Answer	Marks	Notes
6	(i)	$dv = 0.72 + 0.072 t^2$	M1	Diffn
		$a = \frac{dv}{dt} = 0.72t - 0.072t^2$	A1	Each term
			A1	
			3	
	(ii)	10 f (a a c 2 a a a c 3) t f a c a 3 a a a c 4 10	M1	Int the given fn
		$s = \int_{0}^{10} \left(0.36t^2 - 0.024t^3 \right) dt = \left[0.12t^3 - 0.006t^4 \right]_{0}^{10}$	A1	Both terms
			M1	Deal with def.int
		=120-60=60 m	A1	
			4	
		N.B. Watch $s = \left(\frac{0+12}{2}\right) 10 = 60$		
		N.D. Watch $3 = \left(\frac{1}{2}\right)^{10} = 00$		
7	(i)	AC	B1	Tan function
		$\frac{AC}{VC} = \tan 40 \Rightarrow AC = 10 \tan 40 = 8.39 \text{ m}$	B1	Correct
		Alt forms for AC acceptable.	2	
		-		
		i.e. AC = $\frac{10\sin 40}{\sin 50} = \frac{10}{\tan 50}$		
	(ii)	Angle C = $180 - 50 - 60 = 70$	B1	
	()	č	M1	To find AB
		$\Rightarrow \frac{AB}{\sin C} = \frac{AC}{\sin B}$	F1	
		$\Rightarrow AB = 8.39 \times \frac{\sin 70}{\sin 60} = 9.10 \text{ m}$	A1	Must be 3 s.f.
		sin60	4	
8	(i)	$2(1 - \sin^2 x) = 5\sin x - 1$	M1	Use of pythag.to
		$\Rightarrow 2\sin^2 x + 5\sin x - 3 = 0$		change cos ²
			A1	All working -
	(;;)	$(2 \cdot 1)(1 \cdot 1)(1 \cdot 1) = 0$	<u>2</u> M1	U
	(ii)	$(2\sin x - 1)(\sin x + 3) = 0$	101 1	Solve quad in sin <i>x</i> or <i>s</i> etc
		$\Rightarrow \sin x = \frac{1}{2}$	A1	s cic
		$\rightarrow \sin x - \frac{1}{2}$	111	¹ / ₂ seen
		$\Rightarrow x = 30^{\circ}, 150^{\circ}$	A1	
			F1	30 seen
			4	180 – ans
		SC. $\sin x = -\frac{1}{2} \Rightarrow x = 210,330$ M1 A0 A0 F1		(only one extra angle)
9		3 roots are 1, 2, 13 – allow $\pm 1, \pm 2, \pm 13$	B1 soi	
		Equation is $(x - 1)(x - 2)(x - 13) = 0$	B1	Factor form. Condone
				no = 0
		Giving $x^3 - 16x^2 + 41x - 26 = 0$	M1	Expand to give cubic
		i.e. $a = -16$, $b = 41$	A1 A1	
		(Can be seen in cubic.	isw	
			5	
		Alternative method.		
		$f(1) = 0 \Longrightarrow a + b = 25 \qquad B1$		
		$f(2) = 0 \Longrightarrow 4a + 2b = 18 B1$		
		Solve to give a and b M1 A1, A1		

Section B

Q .		Answer	Marks	Notes
10	(i)	140 140	B1 B1	
		\overline{v} , $\overline{v+5}$	2	
	(ii)	Gavin's time minus Simon's time is 15 mins = $\frac{1}{-}$ hr	B1	¹ ⁄ ₄ hr
		Gavin's time minus simon's time is 15 mins $ -$ in 4	B1	Subtract
		$\Rightarrow \frac{140}{v} - \frac{140}{v+5} = \frac{1}{4}$		
		$\rightarrow \frac{1}{v} - \frac{1}{v+5} - \frac{1}{4}$	M1	Clear fractions
		$\Rightarrow 4(140(v+5)-140v) = v(v+5)$	1411	ciour nuorions
		$\Rightarrow 2800 = v(v+5) \Rightarrow v^2 + 5v - 2800 = 0$	A1 soi	700
			A1	
			5	
	(iii)	$-5 \pm \sqrt{25 + 4 \times 2800}$	M1	Solve
		$v = \frac{-5 \pm \sqrt{25 + 4 \times 2800}}{2} \approx 50.47 \text{ or } 50.5$	A1	in decimals (ignore
		\Rightarrow Gavin: 2.77 hrs, Simon 2.52 hrs	N / 1	anything else)
		\Rightarrow Gavin takes 2 hrs 46 mins (166 mins)	M1	Convert (only one needs to be seen)
		Simon takes 2 hrs 31 mins (151 mins)	A1	Or give B1 for both in
		Simon takes 2 ins 51 mins (151 mins)		decimals
			F1	This is for one 15 less
		SC For $v = 50 \Rightarrow 168, 153$ give full marks but -1	5	than the other
		tfsf		

Q.		Answer	Marks	Notes
11	(i)	$2 = 16\lambda \Longrightarrow \lambda = \frac{1}{8}$	B1 1	
	(ii)	$\frac{dy}{dx} = \frac{1}{8} \cdot 2x = \frac{x}{4}$ When $x = 4, \frac{dy}{dx} = 1$	E1 M1 A1	Correct derivative from their λ or leaving it in Sub $x = 4$
		$\Rightarrow \text{Tangent at T is } y - 2 = 1(x - 4)$ $\Rightarrow y = x - 2$ When $y = 0, x = 2$ So B is (2, 0)	DM1 A1 A1 6	(numeric gradient to give tangent)
	(iii)	Area under curve = $\int_{0}^{4} \frac{x^{2}}{8} dx = \left[\frac{x^{3}}{24}\right]_{0}^{4}$	M1 A1	Int. Function
		Area of triangle = 2 Shaded area = $\left[\frac{x^3}{24}\right]_0^4 - 2 = 2\frac{2}{3} - 2 = \frac{2}{3}$	B1 M1 A1	Sub limits for int and subtract triangle
		N.B. Area under (curve – line) from 0 to 4 M1 A1 only	5	

Q.		Answer	Marl	KS	Notes
12	(i)	Worker hours for tables = $12x$	M1		Must see 12 <i>x</i> and 6 <i>y</i>
		Worker hours for chairs $= 6y$			
		$\Rightarrow 12x + 6y \le 24 \times 40 = 960 \Rightarrow 2x + y \le 160$	A1		
	(0.0)	20 10 1000	2.64	2	
	(ii)	$30x + 10y \le 1800$	M1		D 1 1
		$(\Rightarrow 3x + y \le 180)$	A1		Does not have to be
		~ 2	B1		simplified
		$y \ge 3x$	Ы	3	
	(iii)			3	
		N.B. Intercepts on axis must be seen N.B. Ignore < instead of \leq	B1 B1 E1 E1	4	Each line For $y \ge 3x$ Must be a region including the y axis as boundary
	(iv)	We wish to maximise the profit. Profit per table = 20, profit per chair = 5 i.e. $P = 20x + 5y$	B1	4	Something that connects 20 with <i>x</i>
	(v)	Greatest profit will occur where the lines $y = 3x$			
		and $3x + y = 180$ intersect.	B1		30 ± 2
		This is at (30, 90).	B1	•	90 ± 2
		Allow even if shading for $y \ge 3x$ is wrong.	2		But answers must be integers.
		SC: Trying all corners without the corect answers B1			
		SC: Drawing an O.F. line without the right answer B1			

13	(i)	Angles on straight line means $\alpha = 180 - \beta$	B1		Must make reference to the figure of the
		And $\cos(180 - \beta) = -\cos\beta$	B1	2	question
	(ii)	$\cos \alpha = \frac{x^{2} + (a/2)^{2} - c^{2}}{2 \cdot (a/2)x}$	M1		Correct cosine formula. Condone missing brackets.
		$=\frac{x^{2}+\frac{1}{4}a^{2}-c^{2}}{ax}=\frac{4x^{2}+a^{2}-4c^{2}}{4ax}$	A1	2	
	(iii)	$\cos\beta = \frac{4x^2 + a^2 - 4b^2}{4ax}$	B1	1	
		N.B. also $-\frac{4x^2 + a^2 - 4c^2}{4ax}$ $\frac{4x^2 + a^2 - 4b^2}{4ax} = -\frac{4x^2 + a^2 - 4c^2}{4ax}$			
	(iv)	$\frac{4x^2 + a^2 - 4b^2}{4ax} = -\frac{4x^2 + a^2 - 4c^2}{4ax}$	M1 M1		Use of (i), (ii) and (iii) Clear fractions
		$\Rightarrow 4x^2 + a^2 - 4b^2 = -\left(4x^2 + a^2 - 4c^2\right)$	A1		
		$\Rightarrow 4x^{2} + a^{2} - 4b^{2} = -4x^{2} - a^{2} + 4c^{2}$ $\Rightarrow 8x^{2} + 2a^{2} = 4(b^{2} + c^{2})$	M1		Simplify
		$\Rightarrow 4x^2 + a^2 = 2(b^2 + c^2)$	A1	5	
	(v)	a = 46, b = 29, c = 27 gives $4x^2 + 46^2 = 2(29^2 + 27^2)$	M1		Can be substituted in any order
		gives $x^2 = 256$ i.e. $x = 16$	A1	2	uny order
		S.C. Use of cosine formula in large triangle to get an angle ($C = 36.2$, $B = 33.4$) Then use of cosine formula in small triangle to		_	
		get $x = 16$ M1, A1 only if the answer is 16.			
		SC: Scale drawing gets 0.			

9

Grade Thresholds

FSMQ Advanced Mathematics 6993

June 2008 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	68	58	48	38	29	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	26.4	36.7	46.5	56.0	64.7	100	7261

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

