

Additional Mathematics

ADVANCED FSMQ 6993

Mark Scheme for the Unit

June 2007

6993/MS/R/07

Oxford Cambridge and RSA Examinations

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

MARK SCHEME FOR THE UNIT

Unit	Content	Page
6993	Additional Mathematics	1
*	Grade Thresholds	10

Mark Scheme 6993 June 2007

Q.		Answer			Mark		Notes
Sec	tion /	A					
1		3(x+2) > 2-x			M1		Expand and collect
		$\Rightarrow 3x + 6 > 2 - x$			A1		Only 2 terms
		$\Rightarrow 4x > -4$			A1	S	
		$\Rightarrow x > -1$				5	
2		$v = 6 + 3t^2 \Longrightarrow s = 6t + t^3 + c$			M1 A1		Ignore c
					DM1		Either sub to find <i>c</i>
		Take $s = 0$ when $t = 1 \Longrightarrow c = -7$					or sub and subtract
		When $t = 3$, $s = 18 + 27 - 7 = 38$			A1		from definite integral
		Alternatively:					M1 int A1
		$s = \int_{-1}^{3} (6 + 3t^2) dt = \left[6t + t^3 \right]_{-1}^{3} = (18 + 27) (6)$	(1) - 3	28			DM1 sub and sub
		$s = \int_{1}^{1} (0+3i) di = [0i+i]_{1}^{1} = (10+2i) = (0-1)$	-1)-5	0		4	A1
3		2 . 2			M1		Complete the square
5		$x^{2} + y^{2} - 4x - 6y + 3 = 0$					
		$\Rightarrow x^2 - 4x + y^2 - 6y = -3$					
		$\Rightarrow x^2 - 4x + 4 + y^2 - 6y + 9 = 4 + 9 - 3$					
		$\Rightarrow (x-2)^2 + (y-3)^2 = 10$			B1		Centre
		\Rightarrow Centre (2, 3), radius $\sqrt{10}$ (≈ 3.162)			AI	3	Accept correct
		SC: Penultimate line M1 A1					answers with no
		S.C. Centre B1					working
		Find a point on the circle					
		and then use Pythagoras M1 to find radius A1					
4		$\sin x = -4\cos x \Longrightarrow \tan x = -4$			B1		
		$\Rightarrow x = +75.96^{\circ}$			B1		For either value from
		$\Rightarrow x = 180 - 75.96 = 104^{\circ}$			M1		For method to find a
		and $x = 360 - 75.96 = 284^{\circ}$			A1		correct answer from
					AI	5	calculator
		Alternatively					-1 extra values
		Use of $s^2 + c^2 = 1$	M1				outside 360 ⁰
		$\Rightarrow \cos^2 x = \frac{1}{17}$					
		$\Rightarrow x = \pm 75.96^{\circ}$	A1				
		$\Rightarrow x = 180 - 75.96 = 104^{\circ}$	M1 A	.1			
		and $x = 360 - 75.96 = 284^{\circ}$	А	1			
		S.C. Graphical method $\pm 2^{\circ}$ tolerance B1 B1					

5	(i)	Using $v^2 = u^2 + 2as$	M1		Got to be used!
		$\Rightarrow 10^2 = 30^2 + 2a.300$	A1		
		$\Rightarrow 600a = -800$			
		$\Rightarrow a = -\frac{4}{2}$	A1		Ignore –ve sign.
		$a = \frac{1}{3}$		3	
	(ii)	Using $v = u + at$	M1		
		$\Rightarrow 10 = 30 - \frac{4}{3}t$			
		$\Rightarrow t = 20 \times \frac{3}{4} = 15$	F1	2	From their a
		Or: $s = \frac{u+v}{2}t$ $\Rightarrow 300 = \frac{30+10}{2}t$			This could be used in (i) to find <i>t</i> then <i>a</i>
		$\Rightarrow t = \frac{15}{40} = 15$			
6		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 3$	B1 M1		Diff correctly Substitute in their gradient function
		At (2, 6) $\frac{dy}{dt} = 9 \implies y = 6 = 9(x - 2)$	DM1		Set up equation with
		$\Rightarrow y = 9x - 12$	A1	4	their gradient
7		$\frac{dy}{dx} = 3x^2 - 4x - 15$ = 0 when $3x^2 - 4x - 15 = 0$	M1 A1 M1		=0 and attempt to solve
		$\Rightarrow (3x+5)(x-3) = 0$ $\Rightarrow x = 3, -\frac{5}{2}$	A1		
		$d^2 v$	M1		Differentiate again
		$\frac{dy}{dx^2} = 6x - 4$	F1		and substitute
		When $x = 3$, $\frac{d^2 y}{dx^2} > 0$	A1	7	Droviding all other
		$\Rightarrow \min m m m m m m m m m m m m m m m m m m $		1	marks earned
		N.B. Any valid method is acceptable, but not that $x = 3$ is the right hand value or that the y value is lower then for the other value of x.			

8	(i)	$4x - x^2 = x^2 - 4x + 6$	M1		Equate and attempt
		$\Rightarrow 2x^2 - 8x + 6 = 0$			to collect terms
		$\Rightarrow x^2 - 4x + 3 = 0$	M1		Solve a quadratic
		$\Rightarrow (x-3)(x-1) = 0$	A1		Ans only seen - B1
		$\Rightarrow x = 3,1$		3	
	(ii)	Area = $\int_{1}^{3} (4x - x^2) dx - \int_{1}^{3} (x^2 - 4x + 6) dx$	M1		Integrate
		$= \left[2x^{2} - \frac{x^{3}}{3}\right]_{1}^{3} - \left[\frac{x^{3}}{3} - 2x^{2} + 6x\right]_{1}^{3}$	A1		All terms; condone one slip
		$=(18-9)-(2-\frac{1}{3})-(9-18+18)+(\frac{1}{3}-2+6)$	DM1		Substitute and
		$(1)^2 + (1)^2$	A1		limits wrong)
		=9-1-9+4-=2-3		4	
		Alternatively:			
		Area = $\int_{1}^{3} (8x - 2x^2 - 6) dx$			M1 integrate
		$\begin{bmatrix} 2r^3 \end{bmatrix}^3$			A1
		$= \left\lfloor \frac{4x^2 - \frac{2x}{3} - 6x}{3} \right\rfloor_1$			DM1 sub and sub
		$= (36 - 18 - 18) - \left(4 - \frac{2}{3} - 6\right) = 0 - \left(-2\frac{2}{3}\right)$			A1
		$=2\frac{2}{3}$			
9	(i)	$AB = \sqrt{(5 - 1)^{2} + (8 - 1)^{2}} = \sqrt{85}$	M1		For sight of Pythagoras used at
		$AC = \sqrt{(81)^2 + (3-1)^2} = \sqrt{85}$	A1	2	least once
	(ii)	$M = \left(\frac{5+8}{2}, \frac{8+3}{2}\right) = \left(\frac{13}{2}, \frac{11}{2}\right)$	B1	1	
	(iii)	Grad BC = $\frac{8-3}{5-8} = -\frac{5}{2}$	E1		Both gradients; AM ft from their M
		Grad AM = $\frac{\frac{11}{2} - 1}{\frac{13}{2} + 1} = \frac{\frac{9}{2}}{\frac{15}{2}} = \frac{9}{15} = \frac{3}{5}$			
		$\Rightarrow m_1.m_2 = -\frac{5}{2} \cdot \frac{3}{2} = -1$	B1		Both and demonstration
		Allow a geometric argument with reference to M being midpoint and the triangle isosceles.		2	
	(iv)	$y = 1 = \frac{3}{2}(r+1)$	M1		Must use (-1, 1) or
		$y = \frac{1}{5} \left(x + 1 \right)$	A1		their IVI and their g
		\Rightarrow 5 y = 3x + 8		2	

Section B

11	(a)(i)	$x^3 - 3x^2 - 4x = 0$	M1		
		$\Rightarrow x(x^2 - 3x - 4) = 0$	A1		Accept any valid method
		$\Rightarrow r(r-4)(r+1) = 0$	A1		
		$\Rightarrow x(x - 1)(x + 1) = 0$ $\Rightarrow x = 0, -1, 4$	A1		
				4	
		S.C. just answers B2			
	(ii)	Must have points on axes	B1	1	
	(b)(i)	Remainder theorem or long division G(-1) = 12	M1 A1	2	For sub –1
	(ii)	g(2) = 0	B1	1	For sub $x = 2$
	(iii)	By continued trial	M1	-	
		or by division and quadratic factorisation	Δ1		3
		g(3) = 0, g(-2) = 0	A1		-2
		\Rightarrow <i>x</i> = 2, 3, -2	A1	4	Final answer
		S.C. just answers B2		4	
		Alternatively: By division by $(x - 2)$ and quadratic factorisation M1 $(x - 2)(x^2 - x - 6) = 0$ A1 $\Rightarrow (x - 2)(x + 2)(x - 3) = 0$ A1 $\Rightarrow x = 2, -2, 3.$ A1			

12	(i)	$(9)^{8}$			
		$P(All males) = \left(\frac{1}{20}\right) = 0.00168$		M1	
		(20)		AI 2	
	(ii)	$(9)^{3}(11)^{5}$		M1	powers
		$P(5 \text{ females}) = {}^{8}C_{5} \left[\frac{3}{20} \right] \left[\frac{11}{20} \right]$		M1	coefficient
		(20)(20)		A1	56 (could
		$= 0.2568 \approx 0.257$		A1	be implied)
				4	implied)
	(iii)	$23 \left(2 \times 17\right)$		M1 A1	probability
		$P(\text{full-time}) = \frac{1}{40} \left(\text{ Or } P(PT) = \frac{1}{40} \right)$			
		P(at least two nart-time) = 1 - P(all FT) - P(all FT)	(7FT 1PT)	N/1	1–2correct
		$\Gamma(arreast two part-time) = \Gamma(arr \Gamma) \Gamma(arr \Gamma)$	(/11,111)		terms
				A1	Powers
		$-1 - \left(\frac{23}{23}\right)^{8} - 8\left(\frac{23}{23}\right)^{7}\left(\frac{17}{17}\right)$		A1	coefficient
		$\begin{bmatrix} -1 \\ 40 \end{bmatrix} = \begin{bmatrix} 0 \\ 40 \end{bmatrix} \begin{bmatrix} 40 \end{bmatrix} \begin{bmatrix} 40 \end{bmatrix}$		A1	Ans
		=1-0.0119-0.0706=0.917		6	
		Alternatively:			
		Add 7 terms	M1		
		$(23)^6 (17)^2 (17)^8$			
		$28\left(\frac{1}{40}\right)\left(\frac{1}{40}\right)$ + $\left(\frac{1}{40}\right)$	AI powers		
			A1 Coeffs		
		0.017			
		= 0.917	A1 Ans		
		S.C. Read "At least two" as "exactly two"			
		$(23)^6(17)^2$			
		$28\left \frac{25}{40}\right \left \frac{17}{40}\right = 28 \times 0.00653 = 0.1828$	B1		

13	(i)	Pythagoras:	M1	Correct use of Pythagoras for at
		$OM^2 = 37^2 - 12^2 \Longrightarrow OM = 35$	A1	least one
		$CM^2 = 20^2 - 12^2 \Rightarrow CM = 16$	A1	
			3	
	(ii)	Use cosine rule on triangle OCM	M1	Correct angle
		$16^2 \pm 40^2 = 35^2$	M1	Correct use of
		$\Rightarrow \cos C = \frac{10^{\circ} + 40^{\circ} - 55^{\circ}}{2 \cdot 16^{\circ} + 40^{\circ}} \Rightarrow C = 60.5^{\circ}$	A1	cosine formula
		$2 \times 16 \times 40$	A1	Ans
			4	
	(iii)	Sight of attempt to find base area	M1	
		1	A1	Can be implied
		Area = $\frac{1}{2} \times 16 \times 24 = 192$		
		2	M1	
		Sight of attempt to find height		
		$h = 40 \sin 60.5 = 34.8$	A1	Can be implied
		n = +0.511100.5 = 5+.0		
		$\Rightarrow \text{Volume} = \frac{1}{3} \times 192 \times 34.8 = 2228 \approx 2230 \text{cm}^3$	A1 5	

14	(i)	Apply Pythagoras to both triangles:			
	~ ~	$x^2 = y^2 + 4$	B1		
		$(x + 0.95)^2 = (y + 1.05)^2 + 4$	B1		
				2	
	(ii)	Subtract:	M1		
		$2 \times 0.95x + 0.95^2 = 2 \times 1.05y + 1.05^2$	A1		
		$\Rightarrow 2.1y = 1.9x - (1.05^2 - 0.95^2)$			
		$\Rightarrow 2.1v = 1.9x - 0.2$	A1		
		Alternatively:		3	
		Multiply out one of the brackets B1			
		Substitute for v^2 M1			
		Correct result A1			
	(iii)	Substitute for <i>y</i> :	M1		Get y as subject
		$(1.9x-0.2)^2$			
		$x^{2} = \left \frac{2}{2} \frac{1}{2} + 4 \right $	M1		Sub expression
					for y
		$\Rightarrow 2.1^2 x^2 = 1.9^2 x^2 - 2 \times 0.2 \times 1.9 x + 0.2^2 + 4 \times 2.1^2$			
		$\Rightarrow 0.8r^2 + 0.76r - 17.68 - 0$	A1		O a mag at
		$\rightarrow 0.0x + 0.70x + 17.00 = 0$			Correct
		$\Rightarrow x = \frac{-0.76 \pm \sqrt{0.76^2 + 4 \times 0.8 \times 17.68}}{-0.76 \pm \sqrt{0.76^2 + 4 \times 0.8 \times 17.68}} = \frac{-0.76 \pm 7.56}{-0.76 \pm 7.56} = 4.25$			quadratic
		1.6 1.6	AI		Joive
		Substitute :			Ignore other root
		(1.9x-0.2) 2.75			
		$y = \left(\frac{-2.1}{2.1}\right) = 5.75$		7	
				•	
		Withhold last mark if more than one answer given			
		The quadratic in y is $20y^2 + 21y - 360 = 0$			
		Integer coefficients for x equation gives			
		$20x^2 + 19x - 442 = 0$			

FSMQ Advanced Additional Mathematics 6993 June 2007 Assessment Session

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	70	60	50	40	30	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	28.8	38.6	48.1	57.5	66.8	100	5500

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007