RECOGNISING ACHIEVEMENT

Additional Mathematics

Report on the Unit

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A- level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

The mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

The reports on the Examinations provide information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Mark schemes and Reports should be read in conjunction with the published question papers.
OCR will not enter into any discussion or correspondence in connection with this mark scheme or report.

© OCR 2006

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

REPORT ON THE UNIT

Unit	Content	Page
*	Chief Examiner's Report	5
6993	Additional Mathematics	5
*	Grade Thresholds	9

Free Standing Mathematics Qualification, Advanced Level. 6993 Additional Mathematics

Summer 2006

Chief Examiner's Report

The number of candidates for this specification continues to rise, with an entry nearly 15% up from last year and almost double the entry for the first examination in 2003.
We were pleased to see a large number of very good scripts - in more than one centre the total candidature recorded a mark of over 80%. However, it is still disappointing to find a number of centres for which this specification is clearly not appropriate. The specification clearly states that the specification is suitable for those gaining a good grade at GCSE - typically A*, A or B. The specification is designed to be an enrichment programme for Higher Tier students and it is therefore inappropriate for an entry for students at any other level.

The rubric states that answers should be given to 3 significant figures where appropriate. In past years this has resulted in marks being deducted for the following reasons
Answers being approximated to less than 3 significant figures, particularly the answers in the binomial probability question
Angles being given to 2 or more decimal places
Lengths being given to a large number of significant figures, usually resulting from candidates writing down the total display on their calculator.

The "appropriateness" of this procedure should be evident in questions 2 (where 2 significant figures was demanded) 4, 10, 11 and 13. In general, we adopted a policy of deducting a mark for this where it was first seen and only once throughout the paper.

Section A

Q1 (Calculus)

Better candidates had few problems, though the "integration" of the second term to give $\frac{3^{2}}{2}$ was often seen. Even those who got the integration correct failed to complete the arithmetic correctly; typically we saw $\frac{3^{3}}{3}=3$.

Q2 (Cosine rule)

There was an alternative method of course, which was to draw a line East -West from B, calculating the sides of the two resulting right-angled triangles. This was a typical situation where candidates lost time due to working through a process that was rather longer than the expected method.
Of those who used the cosine rule, some failed to remember the formula properly and many failed to give the answer to 2 significant figures as required.
A large number of candidates also left their answer as $4.465 \ldots$ which is a^{2}, in spite of writing the formula correctly, and so lost the last accuracy mark for failing to take the square root.

Q3 (Trigonometry)

This was attempted by a variety of methods, most leading to inaccurate values. Trial and improvement should be discouraged with this work as it is both time consuming and unnecessary. Most who obtained the first value were also able to give the second and only a very few found values in other quadrants.

Q4 (Coordinate geometry of the circle)

While the vast majority of candidates were able to evaluate the distance between two points, dealing with the equation of a circle which did not have its centre at the origin was not at all well known.

Q5 (Inequalities)

About a third of candidates did not understand that they had to factorise a quadratic function to proceed with the question. Most of the remainder were able to deal with the correct factorisation, but unable to complete the inequality. A common answer was $x>1$ and $x>-5$.

Q6 (Calculus)

Some omitted the constant of integration then spuriously tried to compensate thereafter. Only a few replaced the m in the general equation of the line by the function of x given as the gradient function.

Q7 (Coordinate geometry)

There were two acceptable methods. The first was to write both equations in the form $y=m x+$ c and to comment that the coefficient of x, which is the gradient, is the same for both lines. Of those who did this a large number said that the gradient was $-2 x$. The other method was to claim that two lines are parallel if they do not intersect and attempts to find the point of intersection by solving simultaneously would, for two parallel lines, produce an impossibility (typically $8=5$). This is quite subtle and unfortunately we were not convinced in most cases that candidates knew this and were trying to develop this argument. They solved simultaneously (perhaps because they did not know what else to do) and then could not cope with the apparent mess into which they were getting.
The gradient of the perpendicular line seemed to be well known and those who found -2 as the common gradient used $\frac{1}{2}$ as the gradient of a perpendicular line successfully to complete the question. Of those who wrote the gradient of the given lines as $-2 x$ some then wrote the gradient of a perpendicular line as $\frac{1}{2 x}$. Some successfully completed the question, and so we put this down to sloppy notation but others got themselves confused.

Q8 (Linear Programming)

In general this question was well done. Common errors that led to the loss of one or more marks were:

- The incorrect shading for the inequality $y \leq 3 x$ which not only led to the incorrect answer but encouraged candidates to shade incorrectly also the domain $y \geq 0$, shading instead the region for which $x \geq 0$.
- The drawing of the line $y=\frac{1}{3} x$.
- The final answer left as $(2,6)$.

Q9 (Polynomials)

It was clear that answers to this question were more than usually centre-dependent, in that in some centres hardly any candidate got it right and in many centres practically every candidate obtained full marks.
Most candidates were able to justify that $(x-3)$ was a factor by using the factor theorem (though many did not say so, simply showing that $f(3)=0$ with no comment) but a significant number of these did not seem to know the remainder theorem and obtained the answer to (i) by long division.
Rather more candidates than last year gave the full solution to the equation, though some did still give $x=-1,2$ as the answer.

Q10 (Intersection of line and curve)

A few candidates failed to substitute properly and their algebraic manipulation let them down. Most were able to solve their quadratic equation, however. Once again, marks were lost, often by very good candidates, by failing to read the question. In this question the y values were required as well.

Section B

Q11 (Binomial distribution)

Most candidates knew what to do but there were the expected few who failed to write terms which had consistent powers or coefficients. A surprising number worked with the probabilities 0.65 and 0.45 or even 0.25 .

Q12 (Constant acceleration)

There were very few candidates who were unable to make any headway with this question. However, the constant acceleration formulae were not well known; many used $u=0$ throughout and also many failed to use average speed during the sections of deceleration and acceleration.
For those who used a formula requiring a time in (iii) the two marks allocated to this in the mark scheme (and on the paper) in (iv) were awarded when seen in (iii). For these candidates the allocation of marks to the sections was $1,2,5,4$.
A number of candidates used kilometres and some also took $100 \mathrm{~m}=1 \mathrm{~km}$. If one of these errors had been consistent throughout the question it would have been possible to treat it as a
misread, but unfortunately many of these candidates used incorrect units or conversion inconsistently, dealing with it correctly in some parts but not in others.

Q13 (3-D trigonometry)

This question was possibly the best of the section B questions, perhaps because it was nearest to being part of the GCSE syllabus. In (ii) many answers were unconvincing. Candidates should be clear that when a question says "show" then no fudging or omission of working is acceptable. In this case also it was not acceptable to take an approximate value to be rounded to the given value.
A handful found the wrong angle in (iii). Others used their angle in (iii) in part (v). Generally though, apart from (v), this was popular and an easy source of marks for most of the candidates. In some cases this was the only significant source of marks.
The straightforward method of answering (v) was not adopted by most candidates who chose a rather more complicated route to get to the answers. Finding AM in order to evaluate the area was accepted.

Q14 (Calculus of curves)

Better candidates had few problems and seemed to do the whole problem in a few lines. The majority were able to score full marks in (i) and (ii). Some differentiated in (iii) then stopped, others read ahead and worked out the equation of the line TM rather than the tangent. Some of the descriptions in (v) were vague, but attempts to describe what had been done in this specific case as a general process were credited.

FSMQ Advanced Additional Mathematics 6993
June 2006 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	A	B	C	D	E	U
$\mathbf{6 9 9 3}$	100	79	67	56	45	34	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{6 9 9 3}$	35.2	48.1	57.3	65.7	75.3	100	4381

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge

CB1 2EU

OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

