Surname				0	ther N	ames			
Centre Numl	ber					Candid	date Number		
Candidate Signature		Э							

For Examiner's Use

Free-Standing Mathematics Qualification June 2008 Intermediate Level

ASSESSMENT and QUALIFICATIONS ALLIANCE

USING ALGEBRA, FUNCTIONS AND GRAPHS 6988/2 Unit 8

Tuesday 13 May 2008 9.00 am to 10.15 am

For this paper you must have:

- a clean copy of the Data Sheet (enclosed)
- a calculator
- a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- You may **not** refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is enclosed for your use.

Information

- The maximum mark for this paper is 50.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

SECTION A

Answer all questions in the spaces provided.

Use Volcanoes on page 2 of the Data Sheet.

1 A volcano erupts and lava flows towards a village 5 kilometres away.

The distances of the lava flow from the village, at various times after the eruption, are given in the table below.

Time (t days)	5	10	15	20	25	30
Distance from the village (d km)	4.6	3.9	3.5	3.1	2.6	1.9

1 (a) On the axes below, plot the data in the table.

(2 marks)

1	(b)	Draw a line of best fit on your graph.	(1 mark)
1	(c)	Use the graph to find a formula for d in terms of t .	
		Answer	
1	(d)	How many days after the eruption will the lava reach the village? (You may assume that the lava continues to flow at the same rate.)	(3 marks)
1	(e)	Answer Estimate the speed of the lava in kilometres per day.	(2 marks)
		Answer	(2 marks)

SECTION B

Answer all questions in the spaces provided.

Use Air bubbles on page 2 of the Data Sheet.

2 As an air bubble travels upwards through water, its volume increases.

The formula for finding the initial volume, $u \, \mathrm{cm}^3$, of an air bubble from its volume, $v \, \mathrm{cm}^3$, at the water surface when it has risen h metres is

$$u = \frac{10.3v}{h + 10.3}$$

2 (a) At the water surface, an air bubble has a volume of 2.75×10^{-2} cm³.

What was the initial volume of the air bubble when it was 25 metres below the water surface?

Give your answer in standard form.

• • • • • • • • • • • • • • • • • • • •					•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

.....

Answer.....

(3 marks)

2	(b)	(i)	Rearrange the formula to give v in terms of h and u .
			Answer
			(2 marks)
2	(b)	(ii)	An air bubble 30 metres below the water surface has a volume of $8.5 \times 10^{-4} \text{cm}^3$.
			Calculate the volume of the air bubble at the water surface.
			Answer
			(2 marks)
2	(c)	Find	h when $u = 2 \times 10^{-3}$ and $v = 6 \times 10^{-3}$.
		•••••	
		•••••	
			Answer(3 marks)

Turn over ▶

SECTION C

Answer all questions in the spaces provided.

Use Ice cream containers on page 3 of the Data Sheet.

3 An ice cream manufacturer sells ice cream in two types of container. One container is a cylinder with radius x cm and perpendicular height y cm. The other container is a cone with radius x cm and slant height y cm.

3	(a)	Find the curved surface area of the cylinder when $x = 4$ and $y = 6$.
		•••••••••••••••••••••••••••••••••••••••

Answer

(3 marks)

3 (b) Show that the formula for the total surface area, $S\,\mathrm{cm}^2$, of the closed cylinder can be expressed as

$$S = 2\pi x^2 + 2\pi xy$$

(2 marks)

3	(c)	Factorise fully the expression $2\pi x^2 + 2\pi xy$.
		Answer(2 marks)
3	(d)	Find an expression, in terms of π , x and y , for the total surface area of the closed cone.
		Answer(3 marks)
3	(e)	How many times bigger is the total surface area of the closed cylinder compared to the total surface area of the closed cone?
		(1 mark)

Turn over for the next question

Turn over ▶

SECTION D

Answer all questions in the spaces provided.

Use Containers on page 3 of the Data Sheet.

4 Each of n small containers holds x litres of liquid. The total volume of the liquid is 500 litres.

Find *n* when x = 20 litres. (a)

Answer.....

(1 mark)

The equation connecting n and x is

 $n = \frac{k}{x}$ where k is a constant

What is the value of k?

Answer.... (1 mark)

Which of the following graphs shows the relationship between n and x?

В

(1 mark)

SECTION E

Answer all questions in the spaces provided.

Use Bus journey on page 4 of the Data Sheet.

5 The diagram shows the velocity-time graph of a bus on a journey between two bus stops.

5 (a) The area under the graph represents the distance travelled by the bus.

How far does the bus travel between the two bus stop	os?

(2 marks)

5	(b)	Calculate the time it takes to travel half the distance between the two bus stops.	
		Answer	

Turn over for the next question

Turn over ▶

SECTION F

Answer all questions in the spaces provided.

Use Postcard on page 4 of the Data Sheet.

6 A rectangular postcard measures 20 centimetres by 8 centimetres.

A border of uniform width is drawn inside the rectangle.

A small square is drawn, as shown on the diagram below.

The width of the border, x cm, is the same as the side of the square.

6	(a)	Write an expression, in terms of x , for the length and width of the shaded section.
		Answers: Length
		Width
		(2 marks)

6	(b)	(i)	The shaded section has an area of 124 cm ² .
			Show that $3x^2 - 56x + 36 = 0$.
			(3 marks)
6	(b)	(ii)	By factorising or otherwise, solve the equation $3x^2 - 56x + 36 = 0$ to find the values of x.
			The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$.
			Answers: $x = \dots$ or $x = \dots$ (3 marks)

Question 6 continues on the next page

10

6	(b)	(iii)	Calculate the area of the small square.
			Answer
			(2 marks)

END OF QUESTIONS

