ASSESSMENT and
OUALIFICATIONS

Free-Standing Mathematics Qualification

Making Connections in Mathematics 6987/2

Mark Scheme
 2006 examination - June series

Abstract

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
sor ft or F	follow through from previous incorrect result	
CAO	correct answer only	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Free-Standing Mathematics Qualification

Intermediate Level - Making Connections in Mathematics (6987/2)

Answers and Marking Scheme

Question 1

Question 2

(a)	40°	B1	
(b)	80°	B1	
(c)	$\frac{180-(\text { their } A O B)}{2}=$	M1	$(180-$ their $A O B)$ (Divide by 2$)$
	50°	M1	
	TOTAL	$\mathbf{5}$	

Question 3

(a)	Each triangle has two sides that are the same length, the radius of the circle	B1	
(b)(i)	$180^{\circ}-2 x^{\circ}$		
(ii)	$180^{\circ}-2 y^{\circ}$		
(iii)	$360^{\circ}-\left(180^{\circ}-2 x^{\circ}\right)-\left(180^{\circ}-2 y^{\circ}\right)=$ $2 x^{\circ}+2 y^{\circ}$	B1	Allow B1 for $180-$ something
(c)	$\angle L N M=x^{\circ}+y^{\circ}$	A1A1 \checkmark	
	$\angle L O M=2 x^{\circ}+2 y^{\circ}=2\left(x^{\circ}+y^{\circ}\right)$	B1	
$\therefore \angle L O M=2 \times \angle L N M$			

Question 4

Question 5

Question 6

	$25^{2}-9^{2}=(25+9)(25-9)$ $=34 \times 16$ $=544$	M1A1	Allow any two integers that multiply to 544 for SC2
	TOTAL	$\mathbf{3}$	

Question 7

(a)	Rotation 150° anti-clockwise about centre A	B1 B1	or 210° clockwise
(b)	Mirror line passing through A and mid-point of $E D$	B1	or equivalent
(c)	All four sides are the same length	B1	or other suitable
(d)	At any point angle sum must be 360° square and equilateral triangle have sum of 150° so need additional angle of 210°. This can be achieved only by having an additional square and two equilateral triangles $\left(210^{\circ}=90^{\circ}+\right.$ $\left.2 \times 60^{\circ}\right)$	M1A1	
	TOTAL	$\mathbf{7}$	
	GRAND TOTAL	$\mathbf{5 0}$	

