USING AND APPLYING DECISION MATHEMATICS
6994/2

Unit 14

For this paper you must have:

- an 8-page answer book;
- a clean copy of the Data Sheet (enclosed);
- a scientific calculator;
- a ruler;
- an insert for use in Questions 1,2,3 and 5 (enclosed).

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book.
- The Examining Body for this paper is AQA. The Paper Reference is 699X
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of calculators should normally be given to three significant figures.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is available for your use.
- Fill in the boxes at the top of the insert. Make sure you attach the insert to your answer book.

Information

- The maximum mark for this paper is 60 .
- Mark allocations are shown in brackets.

SECTION A

Answer all questions.
Use Distances and Journey Times on page 2 of the Data Sheet.

Some of the data are reproduced below. Figure 1, printed on the insert, is provided for use in Question 1.

1 A salesperson has to make a tour of six towns, before returning to his starting town. The distances (in miles) are shown below.

Distances in Miles		\mathbf{B}	\mathbf{G}	\mathbf{L}	\mathbf{M}	\mathbf{O}	\mathbf{S}
Bristol	B	-	106	120	167	73	106
Guildford	G	106	-	31	58	67	49
London	L	120	31	-	39	56	77
Maidstone	M	167	58	39	-	107	113
Oxford	O	73	67	56	107	-	67
Southampton	S	106	49	77	113	67	-

(a) Find the lengths of the tours obtained by using the nearest neighbour algorithm starting from:
(i) Bristol
(ii) London
(b) (i) By deleting L, find a lower bound for the length of a minimum tour.
(ii) By deleting B , find another lower bound.
(c) The length of a minimum tour is T kilometres.

Write down the smallest interval for T which can be obtained from your answers to parts (a) and (b).
(d) Use the map of Southern England to suggest an improved tour to that of part (a). Find its length.

2 Figure 2, printed on the insert, is provided for use in Question 2.
A local newspaper commissions an experienced driver to check the off-peak driving times along some of the AA-recommended routes connecting Birmingham, Cardiff, Carmarthen, Gloucester and Hereford.
(a) On Figure 2 of the insert, complete the network of journey times.
(b) Find the total of all the times on the network.
(c) Explain why the driver will need to drive more than is indicated by the answer to part (b).
(d) Showing all your working, find the minimum driving time the driver can expect to take to complete his task.
(e) Suggest a possible route for the driver, starting and finishing in Carmarthen, that corresponds to the minimum time.
(f) State two reasons why the times taken by the driver may differ from those given by the AA.

SECTION B

Answer all questions.
Use Pipelines on page 3 of the Data Sheet.

3 The relevant parts of the data are reproduced below. Figure 3, printed on the insert, is provided for use in Question 3.

Distance in miles
(a) On Figure 3 of the insert, complete the matrix that represents the pipelines connecting $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H .
(b) Apply Prim's algorithm to your matrix, starting by crossing out row A, to find a minimum connector and its total length.
Show all your working clearly, and indicate the order in which you build up your minimum connector.
(c) Draw a tree representing your minimum connector.
(d) Using only the pipelines of your minimum connector, what is the maximum distance between two points on the network?
(e) Suggest why the actual pipe network consists of more pipelines than those on the minimum connector.
(f) State two features of an actual pipe network which are not represented on the network shown above.

SECTION C

Answer all questions.

4 The owners of a holiday resort intend to improve wheelchair access. The costs (in $£ 1000$'s) of installing lifts or ramps to connect different parts of the resort are shown in the table. X means that a direct connection is impractical.

	Reception	A	B	C	D	E
Reception	-	6	4	7	X	X
A	6	-	1	5	7	3
B	4	1	-	X	9	X
C	7	5	X	-	5	4
D	X	7	9	5	-	3
E	X	3	X	4	3	-

(a) Draw a network to represent the data in the table.
(b) Apply Dijkstra's algorithm to find the cheapest cost of making D accessible from the Reception and give the route corresponding to the minimum cost. Show your working clearly and indicate the order in which you assign permanent labels.

Turn over for the next question

Figure 4, printed on the insert, is provided for use in Question 5.
A small construction project has an activity network as shown.

(a) On figure 4 of the insert, complete the early and late times for the network when the duration of activity C is $t=2$.
(b) For what range of values of t is activity C critical?

Free-Standing Mathematics Qualification Specimen Unit Advanced Level

QUALIFICATIONS
ALLIANCE

USING AND APPLYING DECISION MATHEMATICS 6994/2PM
Unit 14

PRELIMINARY MATERIAL

DATA SHEET

REMINDER TO CANDIDATES

YOU MUST NOT BRING THIS DATA SHEET
WITH YOU WHEN YOU SIT THE EXAMINATION.
A CLEAN COPY WILL BE MADE AVAILABLE.

Distances and journey times

The mileage chart opposite shows distances in miles between two towns along AArecommended routes. Using motorways and other main roads this is normally the fastest route, though not necessarily the shortest.

The journey times, shown in hours and minutes, are average off-peak driving times along AA-recommended routes. These times should be used as a guide only and do not allow for unforeseen traffic delays, rest breaks or fuel stops.

For example, the 378 mile (608 km) journey between Glasgow and Norwich should take approximately 7 hours 28 minutes.

Journey Times

 5502392161215412059153314215125784132005124101023113628218657426820114321639204254285681181295631046286241752258516916377161420167675211

Distances in miles (one mile equals 1.6093 km)

Pipelines

The lengths of pipelines between various pumping stations are as shown.

Free-Standing Mathematics Qualification Specimen Unit
Advanced Level

USING AND APPLYING DECISION MATHEMATICS

Unit 14

Insert for use in Questions 1, 2, 3 and 5.

Figure 1

Distances in Miles		B	G	L	M	O	S
Bristol	B	-	106	120	167	73	106
Guildford	G	106	-	31	58	67	49
London	L	120	31	-	39	56	77
Maidstone	M	167	58	39	-	107	113
Oxford	O	73	67	56	107	-	67
Southampton	S	106	49	77	113	67	-

Figure 2

Figure 3

Figure 4

Blank page

Free-Standing Mathematics Qualification

Using and Applying Decision Mathematics

Question 1

(a)(i)	$\mathrm{B}_{73} \mathrm{O}_{56} \mathrm{~L}_{31} \mathrm{G}_{49} \mathrm{~S}_{113} \mathrm{M}_{16} \mathrm{~B}$ 489 miles		B1 M1 A1	B-0 Visits all vertices
(ii)	$\begin{aligned} & \mathrm{L}_{31} G_{49} \mathrm{~S}_{67} \mathrm{O}_{73} \mathrm{~B}_{167} \mathrm{M}_{39} \mathrm{~L} \\ & 426 \text { miles } \end{aligned}$		$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	L-G Visits all vertices
(b)(i)	$\begin{aligned} & \mathrm{L}<\begin{array}{l} 31 \\ 39 \end{array} \\ & \mathrm{M}_{58} \mathrm{G}_{49} \mathrm{~S}_{67} \mathrm{O}_{73} \mathrm{~B} \end{aligned}$ 317 miles		$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Can be implied MST with 4 edges
(b)(ii)	$\begin{aligned} & \mathrm{B}<\begin{array}{c} 73 \\ 106 \end{array} \\ & \mathrm{O}_{56 \mathrm{~L}_{31} \mathrm{G}_{49} \mathrm{~S}}^{\mathrm{M}_{39}} \\ & 354 \text { miles } \end{aligned}$		B1 M1 A1	
(c)	$354 \leq \mathrm{T} \leq 426$		B1F,BIF	FT on answers to (a) and (b)
(d)	$\mathrm{B}_{73} \mathrm{O}_{56} \mathrm{~L}_{39} \mathrm{M}_{58} \mathrm{G}_{49} \mathrm{~S}_{106} \mathrm{~B}$ 381 miles		M1 A1	Any tour Improving on (a)
		TOTAL	16	

Question 2

(a)			
(b)	12 hours 29 minutes	B1	
(c)	There are odd nodes so an Enlerian trail is impossible	B1	
(d)	$\begin{array}{lll} \mathrm{B}-\mathrm{C}_{\mathrm{n}}, & \mathrm{C}_{\mathrm{f}}-\mathrm{G} & 4+ \\ \mathrm{B}-\mathrm{G}, & \mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{n}} 2_{26} \\ \mathrm{~B}-\mathrm{C}_{\mathrm{f}}, & \mathrm{C}_{-}-\mathrm{C}_{\mathrm{G}} & 4+ \end{array}$ The least pairing is B-G, $\mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{n}}$ $12_{29}+2_{26}=14_{55}$	M1 A1 M1 M1 A1	One pair considered All three
(e)	E.g. $\mathrm{C}_{\mathrm{n}} \mathrm{HBGHC} \mathrm{f}_{\mathrm{f}} \mathrm{GBC}_{\mathrm{n}} \mathrm{C}_{\mathrm{f}} \mathrm{C}_{\mathrm{n}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(f)	E.g. Traffic delays The AA times are only averages	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	1st reason 2nd reason
	Total	14	

Question 3

Question 4

(a)	Networks	M1	
		A1	
	Costs	A1	
(b)	Evidence of Dijkstra	M1	6 ft on route
	Correct at B and C	A1	
	Correct at A and D	M1	
	R B A E D	A1	
	£11, 000	B1	
	Total	B1F	
		$\mathbf{9}$	

Question 5

(a)	Early times	M1	at least 4 correct
	All correct	A1	M1
	Late times		at least 4 correct, following through from the final early time
	All correct	A1	
(b)	$' 3 '$ obtained	B1	
	$t \geq 3$	B1	
	Total	$\mathbf{6}$	

