Free-Standing Mathematics Qualification June 2008
Advanced Level

MODELLING WITH CALCULUS
Unit 12

Wednesday 14 May 20081.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- a calculator
- a clean copy of the Data Sheet (enclosed)
- a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is 6992/2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is available for your use.

Information

- The maximum mark for this paper is 60 .
- The marks for questions are shown in brackets.

There are no questions printed on this page

SECTION A

Answer all questions.
Use Temperatures on page 2 of the Data Sheet.

1 For part of the day, the temperature, F° Fahrenheit, can be modelled by the equation

$$
F=t^{2}-5 t+71
$$

where t is the time in hours after 3 am .
(a) Use this model and calculus to predict the minimum temperature which occurred that night.
(b) Find $\frac{\mathrm{d}^{2} F}{\mathrm{~d} t^{2}}$; what can you deduce from its value?
(c) Sketch a graph of the equation for $0 \leqslant t \leqslant 8$.
(d) Compare your sketch in part (c) with the graph on the Data Sheet.

SECTION B

Answer all questions.
Use Sand dunes on page 3 of the Data Sheet.

2 The cross section of a typical sand dune is shown below.
The height of the sand dune, h metres, is the vertical height above O.
The horizontal distance, x, is measured in hundreds of metres from O.

The height may be modelled by the function

$$
h=12 x+60 x^{2}-40 x^{3}
$$

for values of x from -0.2 to 1.6 .
(a) Use this model and calculus to answer the following questions.
(i) Find x when the height is a maximum.
(ii) Find this maximum value.
(iii) Find $\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}$.
(iv) Use your answer to part (a) (iii) to confirm that the value found in part (a) (ii) is a maximum value.
(v) Find the value of x when $\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}=0$ and state what is the physical relevance of this fact.
(vi) Find the value of $\frac{\mathrm{d} h}{\mathrm{~d} x}$ when $x=0.7$.

Hence find the gradient of the sand dune 70 metres from O.
State the units in your answer.
(b) The mean height of the sand dune from $x=0$ to $x=1.5$ is given by

$$
\bar{h}=\frac{1}{1.5} \int_{0}^{1.5}\left(12 x+60 x^{2}-40 x^{3}\right) \mathrm{d} x
$$

(i) Use the trapezium rule with three strips to find an estimate for the mean height.
(ii) Use integration to find the value of

$$
\frac{1}{1.5} \int_{0}^{1.5}\left(12 x+60 x^{2}-40 x^{3}\right) \mathrm{d} x
$$

(iii) Comment on your answers to parts (b) (i) and (b) (ii).

SECTION C

Answer all questions.
Use Ice cream manufacturer on page 4 of the Data Sheet.

3 The number of employees, y, may be modelled by the function

$$
y=90-20 \cos \frac{\pi}{6} t
$$

where t is the number of months after 1 January.
(a) Find the number of employees predicted by the model on 1 January.
(b) Find the number of employees predicted by the model on 1 July (ie when $t=6$). (2 marks)
(c) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} t}$. (3 marks)

SECTION D

Answer all questions.
Use Balloon on page 4 of the Data Sheet.

4 After t minutes, the radius of the balloon, $r \mathrm{~m}$, satisfies the differential equation

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}=-0.2 r
$$

(a) (i) Find the general solution of this differential equation.
(ii) Given that, when $t=0$, the radius was 4 m , show that $r=4 \mathrm{e}^{-0.2 t}$.
(b) Find the value of t when the radius is 2 m .

5 The radius of the balloon, $r \mathrm{~m}$, is given by

$$
r=4 \mathrm{e}^{-0.2 t}
$$

(a) Find r, when:
(i) $t=3$;
(ii) $t=3.1$.
(b) Using your answers to part (a), find an estimate for $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when $t=3$.

There are no questions printed on this page

