Free-Standing Mathematics Qualification June 2008 Advanced Level

WORKING WITH ALGEBRAIC AND GRAPHICAL TECHNIQUES Unit 11

6991/2

Tuesday 13 May 2008 9.00 am to 10.30 am

For this paper you must have:

- a clean copy of the Data Sheet (enclosed)
- an 8-page answer book
- an answer sheet for use in Questions 1, 2, 3, 4 and 5 (enclosed)
- a calculator
- a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book **and** on the top of the answer sheet for Questions 1, 2, 3, 4 and 5.
- The *Examining Body* for this paper is AQA. The *Paper Reference* is 6991/2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- You may **not** refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is enclosed for your use.
- At the end of the examination remember to hand in both your answer book **and** the answer sheet for Questions 1, 2, 3, 4 and 5.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You may use either a scientific or a graphics calculator.

SECTION A

Answer all questions.

1 A model for the number of tickets sold, N, at time t days after they went on sale is given by the equation

 $N = 20t - t^2 \quad \text{for} \quad 0 \le t \le 20$

Use this model to answer the following questions.

- (a) On the answer sheet, plot the graph of N against t for $0 \le t \le 20$. (3 marks)
- (b) Write down the maximum number of tickets sold in one day and the value of *t* at the maximum. (2 marks)
- (c) For how many days were the tickets on sale? (1 mark)
- (d) (i) Rearrange $20t t^2$ in the form $p (t q)^2$ where p and q are constants. (3 marks)
 - (ii) The values of p and q are related to your answers in part (b).

What do the values p and q represent? (2 marks)

SECTION B

Answer all questions.

Use Car efficiency on page 2 of the Data Sheet.

2 The fuel consumption, C miles per gallon, can be modelled by the equation

$$C = \frac{a}{S} + b$$

where S is the speed in miles per hour and a and b are constants.

(a)	On the answer sheet, complete the table of values, giving the values of $\frac{1}{S}$ to places.	3 decimal (2 marks)
(b)	Use the grid on the answer sheet to plot C against $\frac{1}{S}$.	
	Draw a line of best fit on your graph.	(2 marks)
(c)	Use your graph to find the values of a and b.	(3 marks)
		(5 marks)
(d)	Use your values of a and b in the equation $C = \frac{a}{S} + b$ to find:	
	(i) the fuel consumption when the speed is 65 miles per hour;	(1 mark)
	(ii) the speed when the fuel consumption is 55 miles per gallon.	(2 marks)
(e)	The answer sheet shows the graph of C against S for a different car.	
	On the same set of axes draw the graph of the inverse function.	(3 marks)

Turn over for the next question

SECTION C

Answer all questions.

3 (a) The number of passengers, N million, at time t years after 1990 can be modelled by the equation

$$N = 10.2 \times 1.0529^{t}$$

Use this model to calculate:

- (i) the number of passengers in 1998; (2 marks)
- (ii) in which year the number of passengers will exceed 30 million for the first time. (3 marks)
- (b) Another model for the number of passengers at time t years after 1990 is given by the equation

$$N = 10.2 \times t^{0.2855}$$

Use this model to calculate:

- (i) the number of passengers in 1998; (2 marks)
- (ii) in which year the number of passengers will exceed 30 million for the first time. (3 marks)
- (c) Explain why you cannot use the model in part (b) to find the number of passengers before 1990. (1 mark)
- (d) On the answer sheet, sketch the graphs of the two models on the same set of axes.

Label each graph.

(3 marks)

SECTION D

Answer all questions.

4 The height of the tide, h metres, can be modelled by the equation

 $h = 4.0 + 2.2 \sin(30t)^{\circ}$ for $0 \le t \le 12$

where t hours is the number of hours since midnight.

- (a) Use the copy of the tides graph on the answer sheet to:
 - (i) find the height of the tide when t = 4; (1 mark)
 - (ii) find the times when the height of the tide is 3 metres; (2 marks)
 - (iii) find the gradient of the graph when t = 4; (2 marks)
 - (iv) state the units of the gradient. (1 mark)
- (b) When t = 7, the actual height of the tide is 2.95 m.

Calculate the percentage error in the height of the tide when using the model with t = 7. (3 marks)

- (c) Describe fully the transformations that map the graph of the function $h = \sin t^{\circ}$ onto the graph of the function $h = 4.0 + 2.2 \sin(30t)^{\circ}$. (3 marks)
- (d) Why is the model $h = 4.0 + 2.2 \sin(30t)^{\circ}$ not suitable for the graph shown on the data sheet? (1 mark)

Turn over for the next question

5 The height of the tide, h metres, can be modelled by the equation

$$h = 4.0 + 1.8\sin(28t - 336)^{\circ}$$
 for $12 \le t \le 24$

where t hours is the number of hours since midnight.

(a) On the copy of the tides graph on the answer sheet, plot the graph of

$$h = 4.0 + 1.8 \sin(28t - 336)^{\circ}$$
 for $12 \le t \le 24$ (4 marks)

- (b) For the equation $h = 4.0 + 1.8 \sin(28t 336)^{\circ}$, state:
 - (i) the amplitude; (1 mark)
 - (ii) the period; (1 mark)
 - (iii) the maximum height of the tide in the period $12 \le t \le 24$; (1 mark)
 - (iv) the minimum height of the tide in the period $12 \le t \le 24$; (1 mark)
 - (v) the time in the period $12 \le t \le 24$ when the tide is at its minimum height.

(1 mark)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

Surname						Other Names				
Centre Number						Candi	date Number			
Candidate Signati	ure									

Free-Standing Mathematics Qualification June 2008 Advanced Level

WORKING WITH ALGEBRAIC AND GRAPHICAL TECHNIQUES Unit 11

6991/2AS

AQA
ASSESSMENT and
QUALIFICATIONS
ALLIANCE

This answer sheet is to be used when answering Questions 1, 2, 3, 4 and 5 as indicated. Fasten this sheet securely to your answer book.

This graph is to be used when answering Question 1.

(a)

S	90	80	70	60	50	40	30
$\frac{1}{S}$							
С	26	30	35	40	50	63	85

This table is to be used when answering Question 2(a).

This graph is to be used when answering Question 2(b).

This graph is to be used when answering Question 2 (e).

This graph is to be used when answering Question 3 (d).

t

This graph is to be used when answering Questions 4 and 5.

END OF ANSWER SHEET

There is no text printed on this page

There is no text printed on this page

There is no text printed on this page