Free-Standing Mathematics Qualification

Using and Applying Statistics 6990/2

Advanced Level

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking
$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & & \\ \hline \text { M or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Free-Standing Mathematics Qualification

Advanced Level - Using and Applying Statistics (6990/2)
Answers and Marking Scheme June 2008

Question 1

\begin{tabular}{|c|c|c|c|}
\hline (a) \& \begin{tabular}{l}
\[
\frac{(59321.7-59113.5)}{59113.5} \times 100
\] \\
\(0.352 \%\) or better
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
\[
-0.352 \% \Rightarrow \text { MIAO }
\] \\
accept \(0.35 \%\) or better
\end{tabular} \\
\hline (b) \& 1.0766 (1.08) accept for B1M1
\[
x \times 1.0766=60209.5
\]
\[
x=55926(000)
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
from 55925599 \\
Allow 55900(000) to 3sf (Not 55600)
\end{tabular} \\
\hline (c) \& \begin{tabular}{l}
1 The natural change was greater than the Net migration and other changes from 1991 to 1998 OR The natural change was less than the Net migration and other changes from 1998 (allow 1997) to 2005 \\
2 The natural change was fairly stable throughout this period whereas the net migration and other changes was generally growing from 1991 to 2005
\end{tabular} \& B1

B1 \& Or other sensible comparisons, e.g. they were equal in 97 (98); but not individual comparisons other than this

\hline \& TOTAL \& 7 \&

\hline
\end{tabular}

Question 2

(a)	Any one correct fd calculation seen or implied 6 correct fds $2,9,19,33,14.5,0.5$ seen or implied Upper boundaries at 14,16, etc Fully correct histogram	A1	M1 (correct) diagram
(b)	$4+\frac{3}{4} \times 58$		
47	M1	$\left(\pm \frac{1}{2} \quad\right.$ sq for heights only	
	TOTAL	$(14.5 \times 3)+4$ Accept 48 also (integer)	
	$\mathbf{6}$		

Question 3

(a)(i)	$\begin{aligned} & \bar{h}=173.83 \dot{3}=174 \text { (to } 3 \mathrm{sf}) \\ & \bar{f}=26.16 \dot{6}=26 \text { (to } 2 \mathrm{sf} \text {) } \end{aligned}$	B1 B1	Allow 174 or correct decimals Allow 26 or correct decimals
(a)(ii)	$r=0.751$ (seen)	B1	Allow 0.75 also (not 0.8 NMS)
(a)(iii)	$f=0.13 h+3.57$ condone y, x used	B1 B1	From 0.129997815 From 3.5687...allow 3.56 Coefficients to 2sf or better (allow truncation)
(b)	Line through their mean point $(174,26)$ Passing through another calculated value shown or correct check $(165,25)$ if mean correct	B2ft B2ft (dep mean)	$\left.\begin{array}{l} 173-174 \\ 26-26.5 \end{array}\right\}$ $\pm \frac{1}{2} \mathrm{sq}$; value must be shown or $(165,25)$
(c)	As a boy's height increases by 1 cm his foot length on average increases by " 0.13 " cm	B2 (use figures)	positive gradient (in context) B1 accept increasing B1 The gradient is the rate of change between foot length and height in boys \Rightarrow B1
(d)	The boys scatter diagram exhibits strong positive correlation because the points are close to the line of best fit whereas for the females scatter diagram the points are much more varied (spread out) about a line of best fit and consequently they will have a smaller correlation coefficient.	$\begin{gathered} \text { B2 } \\ \text { (good) } \end{gathered}$	B1 for weak explanation e.g. anomalies or outliers
	TOTAL	13	

Question 4

(a)(i)	$\text { Mean }=139.08$ Standard deviation $=26.9$ or 28.1	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	Accept 139 or better (28.092)
(a)(ii)	The males' wrist circumferences are on average much larger than the females. The standard deviation of the females' wrist circumferences is almost twice as large as the males' standard deviation suggesting the females wrist circumferences are much more spread out.	B1ft B1ft	strict ft penalise heights once 'is larger' OK
(b)(i)	69	B1	69 or 180
(b)(ii)	The mean of the females' wrist circumferences will increase. The standard deviation of the females' wrist circumferences will decrease.	B1ft B1	decrease ft 180 only, any other value do not give max b (ii) not range
(c)(i)	$\begin{aligned} & P(F<185)=P\left(Z<\frac{185-170}{9.6}\right) \\ & =P(Z<1.56(25) \\ & =\Phi(1.56(25) \\ & =0.941 \end{aligned}$	M1 M1 A1	accept 0.94 or better
(c)(ii)	$\begin{aligned} & P(F<146)=P\left(Z<\frac{146-170}{9.6}\right) \\ & =P(Z<-2.5) \\ & 0.9938 \text { seen } \\ & =1-0.9938 \\ & =0.0062 \end{aligned}$	M1 A1 M1 M1 A1	ans 0.62% without further work $\Rightarrow 4 \text { marks }$ (lose 1 mark)
	TOTAL	16	

Question 5

(a)	Assistant Professor (ave age 39)	B1				
(b)(i)	Cumulative frequencies 2, 15, 46, 65, 66	B1	must be an increasing function throughout			
(b)(ii)	Plotting their heights at ucb's (40, 50, 60, 70, 75) Smooth curve or polygon passing through their heights	B1ft	boundaries $\pm \frac{1}{2}$ sq	$	$	B1ft
:---						
(c)						
Median Senior Lecturer $=51$ On average the Professors are older than Senior Lecturers.						
B1ft		B1ft				
:---		Follow their curve if increasing their "correct" values from their CFC's (dep method)				
:---						
TOTAL						

Question 6

(a)(i)	$\frac{42}{297}(\times 100=14.1 \%)$			M1	Either correct method seen accept 14% or better
(a)(ii)	$\frac{422}{1166} \times(100=36.2 \%)$			A1	Both answers correct (may not be \%'s) accept 36% or better
(a)(iii)	The proportion of male Professors is more than (twice that of) the female Professors.			B1dep	must be the "correct" method comparison - dep(a)
(b)	Any correct method seen or implied by two correct answers			M1	e.g. $\frac{100}{1463} \times 153$ All decimals for females or males correct to at least 1d.p. if shown - mark whole numbers first
	All UTOs	Female	Male	A1	
	Univ. Lecturer	(10.46) 10	(24.74) 25		
	Senior Lecturer	(3.90) 4	(12.92) 13	A1	All female integers correct
	Reader	(3.08) 3	(13.19) 13	A1	All male integers correct sc3 1 compensating row
	Professor	(2.87) 3	(28.84) 29		
(c)	$(297 \times 0.148)+(1166 \times 0.074) \quad W=20 \%$			$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$44+86$
	$=130(.24)$		$=80 \%$		
	$\frac{130}{1463} \times 100$		$\left.\begin{array}{l} =2.96 \\ =5.92 \end{array}\right\rangle 8.88 \%$	M1	8.9% of $1463=130$
	$=0.0888 . .$.			A1	
	TOTAL			11	
	TOTAL MARK	OR PAP		60	

