Free-Standing Mathematics Qualification June 2006 Advanced Level

6992/2

Q U A L I F I C A T I O N S A L L I A N C E

For this paper you must have:

- an 8-page answer book
- a calculator
- a clean copy of the Data Sheet (enclosed)

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is 6992/2.
- Answer **all** questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of a calculator should normally be given to three significant figures.
- You may **not** refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is available for your use.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.

6992/2

There are no questions printed on this page

SECTION A

Answer all questions.

Use Tennis on page 2 of the Data Sheet.

1 Maria hits a ball while playing tennis.

The vertical height of the ball, y metres, above A, the point at which it was hit, is given by

$$y = 4t - 5t^2$$

where t is the time in seconds after the ball is hit.

(a)	(i) F	Find the height of the ball above A when $t = 0.5$.	(1 mark)
		Find the height of the ball above A when $t = 1$. Interpret your answer.	(2 marks)
(b)	Find -	$\frac{dy}{dt}$, the vertical velocity of the ball, in metres per second.	(2 marks)
(c)	Find t	when $\frac{\mathrm{d}y}{\mathrm{d}t} = 0$.	(2 marks)
(d)	Hence	predict the maximum vertical height of the ball above A .	(2 marks)
(e)	(i) F	Find $\frac{d^2 y}{dt^2}$.	(1 mark)
		Hence state how this value confirms that the answer to part (d) is the max eight and not the minimum.	imum (1 mark)
(f)	Maria hits the ball when it is 2.4 metres above the level of the horizontal ground.		

(I) 8

Find the time when the ball hits the ground. (4 marks)

Turn over for the next question

SECTION B

Answer all questions.

Use Tides on page 2 of the Data Sheet.

2 At 8 am, the time, t hours, was taken to be 0. For values of t from 0 to 8, the height of the water, h centimetres, may be modelled by the function

$$h = 43 + 3t^2 - 0.3t^3$$

- (a) Using the model $h = 43 + 3t^2 0.3t^3$ and calculus, find the maximum height of the water. (6 marks)
- (b) State the time when the height of the water is at a minimum. (1 mark)
- (c) The mean height of the water, \overline{h} , during the first 8 hours is given by

$$\overline{h} = \frac{\int_{0}^{8} (43 + 3t^2 - 0.3t^3) \mathrm{d}t}{8}$$

- (i) Use the trapezium rule with four strips to find an estimate for the mean height of the water during these eight hours. (5 marks)
- (ii) Use integration to find the exact value of h. (4 marks)
- (d) When t = 6, the actual height of the water was 90 cm.

Find the percentage error, when t = 6, in using the model to predict the height of the water. (3 marks)

(e) Find the value of t when $\frac{d^2h}{dt^2}$ is zero. Interpret what is happening at this time. (4 marks)

Turn over for the next question

SECTION C

Answer all questions.

Use Value of Lisbon Logistics shares on page 3 of the Data Sheet.

3 The value of Lisbon Logistics shares, $\pounds V$, during the first seven months of the year 2005, may be modelled by the function

$$V = 5 + 3\sin\frac{\pi}{4}t$$

where *t* is the time in months after 1 January 2005. The graph of this equation for $0 \le t \le 7$ is shown below.

SECTION D

Answer all questions.

Use Temperature on page 4 of the Data Sheet.

4 A bottle of milk is taken out of a fridge at 2 °C and placed in a room at a temperature of 20 °C.

After t minutes, the temperature, c (in °C), satisfies the equation

$$\frac{\mathrm{d}c}{\mathrm{d}t} = \frac{1}{40}(20-c)$$

(a) (i) Find
$$\frac{dc}{dt}$$
 when $c = 5$. (1 mark)

(ii) Interpret this value. (1 mark)

(b) Show that
$$\frac{1}{40}t = \ln \frac{18}{20-c}$$
. (4 marks)

(c) Rearrange this equation to give c in terms of t. (3 marks)

- (d) When t = 10, find the temperature of the milk. (2 marks)
- (e) (i) State the value which c approaches as t becomes very large. (1 mark) dc

(ii) State the value of
$$\frac{dc}{dt}$$
 as t becomes very large. (1 mark)

END OF QUESTIONS

There are no questions printed on this page