

Free-Standing Mathematics Qualification

Modelling with Calculus 6992/2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
А	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	OE	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
-x EE	deduct x marks for each error	G	graph	
NMS	no method shown	с	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Free-Standing Mathematics Qualification Advanced Level – Modelling with Calculus (6992/2) Answers and Marking Scheme

(a)(i)	$y = 2 - \frac{5}{4} = 0.75$	B1	
(ii)	y = 4 - 5 = -1	B 1	
	The ball is below the point where it was hit	B 1	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 4 - 10\mathrm{t}$	B1 B1	4 - 10 <i>t</i>
(c)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Longrightarrow$		
	4 - 10t = 0	M1	
	t = 0.4	A1	
(d)	When $t = 0.4$, $y = 4 \times 0.4 - 5 \times (0.4)^2$	M1	
	= 0.8	A1	CAO
(e)(i)	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -10$	B1	
(ii)	This is negative which means the turning point is a maximum	B1	
(f)	Hits ground when $y = -2.4$	B1	
	$-2.4 = 4t - 5t^2$	M1	M1 2.4 = $4t - 5t^2$
	$5t^2 - 4t - 2.4 = 0$		
	$25t^2 - 20t - 12 = 0$		
	(5t-6)(5t+2) = 0	M1	
	$t = \frac{6}{5}$ or 1.2 seconds	A1	
	TOTAL	15	

(a)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 6t - 0.9t^2$	M1A1	
	= 0 when		
	$6t - 0.9t^2 = 0$ 20 t - 3t^2 = 0	M1 M1	
	$t = 0$ $6^{\frac{2}{2}}$	A1	Condone omission of
	1^{-1} 0, $0\frac{1}{3}$	A 1	zero
	When $t = 6\frac{2}{3}$, $h = 87.4$	AI	Accept 87, 87.5
(b)	When $t = 0$ or 8am	B1	Accept 10.30 pm (±10 minutes)
(c)(i)	When $t = 0, h = 43$		
	When $t = 2$, $h = 52.6$		
	When $t = 4$, $h = 71.8$ When $t = 6$, $h = 86.2$		
	When $t = 8$, $h = 81.4$	B2	B1 for 3 correct.
			Allow ± 2 for each
	Integral $\approx \frac{1}{2} .2(43+81.4+ 2[52.6+/1.8+86.2])$	M1A1	
	= 545.6 Mean value is 68.2	A1	
(ii)	Integral is $[43t + t^3 - 0.075t^4]_0^8$	M1A1	M1 At least 2 correct
	= 344 + 512 - 307.2	A1	A1 At least 2 correct
	= 548.8 - 548.8	A1	CAO
	$h = \frac{31000}{8} = 68.6$		
(1)	When $f = 0.02$	D1	
(d)	when $t = 0, n - 80.2$ Error is 3.8	D1	
	Percentage error is $\frac{3.8}{90} \times 100$	M1	
	= 4.22%	A1	Accept $4\frac{2}{9}$ or 4.2
			9 SC2 4.4 from rounding
(e)	$d^2h = 6$ 18 t	B 1	C
	$dt^2 = 0 = 1.8 t$		
	= 0 when $6 = 1.8t$	M1	
	$t = 3\frac{1}{3}$ or 3.33	AI	
	This means that the rate of increase of the		
	height of the water, <i>h</i> is the greatest	B1	
	IUIAL	23	

(a)(i)	5	B1	
(ii)	7.12	B1	Accept 7.1 or 7.2
	dV 3π π.	B1	Differential of 5 is 0 $\frac{3\pi}{4}$ B1
(b)(i)	$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{3\pi}{4}\cos\frac{\pi}{4}t$	B 1	B1 Diff of 5 is 0
		B 1	$\cos\frac{\pi}{4}t$ B1
(ii)	When $t = 2$, $\frac{\mathrm{d}V}{\mathrm{d}t} = 0$, \therefore Turning point	B2	Or, use properties of trig curves B1 for $V = 8$
(c)(i)	Maximum value of $\frac{\mathrm{d}V}{\mathrm{d}t}$ is $\frac{3\pi}{4}$	B1	
(ii)	Shares are rising in value the fastest	B1	
	TOTAL	9	

(a)(i)	$\frac{\mathrm{d}c}{\mathrm{d}t} = \frac{3}{8} \text{ or } 0.375$	B1	
(ii)	The rate of change of the temperature is $\frac{3}{8}$ °C per minute	B1	Needs units
(b)	$\int \frac{\mathrm{d}c}{20-c} = \int \frac{1}{40} \mathrm{d}t$	M1	
	$-\ln c-20 = \frac{1}{40}t + k$	A1	
	When $t = 0, c = 2$		
	$\therefore k = -\ln 18$	A1	Condone use of ln –18 and cancelling of minus signs
	$\therefore \frac{1}{40} t = \ln \frac{18}{20 - c}$	A1	
(c)	$e^{\frac{1}{40}t} = \frac{18}{20-c}$	M1	
	$20 - c = 18 e^{-\frac{1}{40}t}$	M1	
	$c = 20 - 18 \mathrm{e}^{-\frac{1}{40}t}$	A1	
d	When $t = 10$, $c = 20 - 18 e^{-\frac{1}{4}}$	M1	
	= 5.98	A1	Accept 6
d(i)	20	B1	
(ii)	0	B1	
	TOTAL	13	
	GRAND TOTAL	60	