ASSESSMENT and
OUALIFICATIONS

Free-Standing Mathematics Qualification

Working with Algebraic and Graphical Techniques 6991/2

Mark Scheme

2006 examination - June series

Abstract

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
sor ft or F	follow through from previous incorrect result	
CAO	correct answer only	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Free-Standing Mathematics Qualification

Advanced Level - Working with Algebraic and Graphical Techniques (6991/2)

Answers and Marking Scheme

Question 1

(a)	$100,1444,3025,4624,6561,8836$	B2	4 correct B1
(b)	6 correct plots to $1 / 2$ sq accuracy Line within 1 square of $(9000,1020 \pm 20)$ and $(0,120 \pm 20)$	B2	4 correct B1
(c)	460 to 500	B1	
(d)	$\left(x^{2}=\right) 1700$ to 1900 41 to 44	B1	3600 B 1
	TOTAL	A1	

Question 2

(a)	$\begin{aligned} & 286.8 \\ & 305-286.8 \\ & \frac{\text { their error }}{305} \times 100 \\ & 5.97 \end{aligned}$	B1 B1 M1 A1	$\begin{aligned} & 287 \\ & 18 \\ & \left(1-\frac{286.8}{305}\right) \times 100 \\ & 5.9 \text { to } 6 \end{aligned}$
(b)	Starts at 130	B1	oe
(c)(i)	Starts at 0	B1	oe
(ii)	$\begin{aligned} & 0.08 x^{2}+9 x=0.2 x^{2}+130 \\ & 0.12 x^{2}-9 x+130 \\ & \frac{(9 \pm \sqrt{18.6})}{0.24} \\ & 55.5 \text { and } 19.5 \end{aligned}$	B1 B1 M1 A1	oe 55 and 20 with working
	TOTAL	10	

Question 3

(a)(i)	$\begin{aligned} & 75 \mathrm{e}^{-60 / 50} \\ & 22.6 \end{aligned}$	M1 A1	22 or 23
(ii)	$\begin{aligned} & 30=75 \mathrm{e}^{-x / 50} \\ & \ln (30 / 75)=-x / 50 \\ & 45.8 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \hline \end{gathered}$	45 or 46
(b)	Gives negative life expectancy	B1	oe
(c)(i)	$y=k \sqrt{x}$	B1	Correct curvature and correct at (0,0)
(ii)	Increases as you get older	B1	oe
(d)(i)	$y=k / x$	B1	Correct curvature
(ii)	Infinite at origin	B2	B1 for does not work at origin oe
	TOTAL	11	

Question 4

(a)	4 values eg $(15,1256),(20,1280),(25,1065),(30$, $650)$ 4 plots to $1 / 2$ square accuracy smooth curve through points through $(18,1300)$ to $1 / 2$ square accuracy	B1	
(b)(i)	1300	B1	
(ii)	18 or 2013	B1	
(c)(i)	Tangent drawn at $t=5$	B1ft	
(ii)	£ per year	B1ft	
(d)	$1200=1300 \sin (5 t)$	B1	
	$13.4,13.5,13,14$	M1	
(e)	$(1$ way) stretch parallel $t(x)$ axis scale factor $1 / 5$	B1	
	(1way) stretch parallel $S(y)$ axis scale factor 1300	B1	
	TOTAL	$\mathbf{1 3}$	

Question 5

(a)(i)	$\begin{aligned} & \ln N=\ln k+\ln \left(t^{c}\right) \\ & \ln N=\ln k+c \ln t \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
(ii)	$\begin{aligned} & \ln t 0,0.693,1.10,1.39,1.61,1.79 \\ & \ln N 4.25,5.97,7.00,7.71,8.27,8.73 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	
(iii)	Correct plots to $1 / 2$ square accuracy Line of best fit	$\begin{gathered} \text { B1 } \\ \text { B1ft } \end{gathered}$	
(iv)	$\ln k=4.2$ to 4.3 Gradient $=c=$ vertical/horizontal $c=2.4$ to 2.6 and $\ln N=c \ln t+\ln k$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Values needed $\operatorname{SC} 2 y=c x+\ln k$ with c and $\ln k$ in ranges given
(v)	$\begin{aligned} & k=66 \text { to } 74 \\ & N=(\text { their } k) t^{\text {their } c} \\ & \hline \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1ft } \end{gathered}$	
(b)(i)	$\begin{aligned} & 50 \times 3^{3.6} \\ & 2609 \end{aligned}$	M1 A1	2610
(ii)	$\begin{aligned} & 1000=50 t^{3.6} \\ & \ln (100 / 50)=3.6 \ln t \end{aligned}$ exponentiation 2.298	M1 M1 DM1 A1	M2 for $3.6^{\text {th }}$ root of 20 2.3
	TOTAL	17	
	GRAND TOTAL	60	

