

Free-Standing Mathematics Qualification

Using and Applying Statistics 6990/2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	OE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Free-Standing Mathematics Qualification Advanced Level: Using and Applying Statistics (6990/2) June 2006

Answers and Marking Scheme

(a)(i)	$\bar{l} = 21.75 = 21.8 \text{ cm}$ (to 3sf)	B1	
	$\overline{w} = 35.08\dot{3} = 35.1 \text{ cm} (\text{to } 3\text{sf})$	B1	Allow other correctly rounded values
(ii)	0.932 (to 3sf)	B1	from 0.93227968 SC1 for Spearman's used correctly
(iii)	w = 1.47l + 3.14 (coefficients to 3sf)	B1	from 1.4687129
		B1	from 3.13882765
(b)	Line through mean point (21.8, 35.1) Intercept 3.14	B2√ B2√	Within 1 square Within 1 square
(c)	Wingspan increases by 1.47 cm for each extra centimetre of length	B2√	B1 for less carefully worded statement
(d)	Correlation coefficient is lower for seabirds than for garden birds.	B 1√	or equivalent (comparison)
	Weaker relationship between wingspan and length for seabirds than garden birds.	B 1√	or equivalent (strength of relationship)
			Allow B1 for statements such as "Strong correlation in both cases" (without comparison).
	TOTAL	13	

(a)(i)	Number of guillemots in 2002 = $2.36 \times 601\ 000$	M1	
	- 1 419 260		
	= 1418360 = 1420000 (to 3sf)	A1	Allow other correctly rounded values eg
			1418000 (to nearest thousand)
(ii)	$1.31 \times \text{Number of guillemots in } 1988 = 1418 360$	M 1	May be implied
	Number of guillemots in 1988	N/L1	
	$=\frac{1418360}{1.31}$	IVI I	
	1 002 710		
	= 1.082 / 18 = 1.080.000 (to 3sf)	A1√	Allow other correctly
	- 1000 000 (10 531)	7 11 V	rounded values eg
			1083000 (to nearest thousand)
(b)	$x \times 1.19 = 1.37$	B1, B1	B1 for 1.19, B1 for 1.37
	$x = \frac{1.37}{1.19}$	M1	or equivalent %
	=1.15126	1711	
	15.1% increase between 1970 and 1988 (3sf)	A1	Allow 15%
	TOTAL	9	

Question	3
----------	---

(a)(i)	Proportion of vehicles observed on urban roads that		
	were cars = $\frac{315}{360}$ or $\frac{7}{8}$ or 0.875 or 87.5%	B1	Allow value given to 2sf (eg 88%) or more
(ii)	Proportion of vehicles observed on motorways that were cars = $\frac{277}{360}$ or 0.769 or 76.9% (3sf)	B 1	Allow value given to 2sf (eg 77%) or more
(iii)	Bigger proportion of vehicles were cars on urban roads	B1	
(b)(i)	Angle for cars = 277°		
	Total number of vehicles observed on motorways		Allow use of proportion from part (a)
	$=\frac{360\times412}{277}$	M1	eg $\frac{412}{0.77}$ million
	= 535.45126		
	= 535 million (to 3sf)	A1√`	or $\frac{412}{0.769} = 536$ million
(ii)	Radii of circles are 2 cm and 4.5 cm	B1	or diameters 4cm, 9cm
	Total number of vehicles on urban roads		
	$= 535.45126 \times \frac{2^2}{4.5^2}$	M1	M1 for any indication of use of squares of radii or
	= 105.768		diameters
	= 106 million (to 3sf)	A1	ft from answer to (b)(i)
	TOTAL	8	

Number of cars breaking speed limit	B1	
$= 16\ 400 \times 5 + 13\ 100 \times 5 + 6100 \times 10 + 1200 \times 10$	M1	Must have 3 parts correct Frequency densities
= 220500 thousand	A1 √	
Percentage of cars breaking speed limit		
$=\frac{220.5}{412}\times100=53.5\%$ (to 3sf)	B 1√	Accept 53 or 54%
TOTAL	4	

(a)(i)	Median = 73 mph	B1	Allow ± 1 mph
(ii)	UQ = 81 mph LQ = 62 mph IQR = 81 - 62 = 19 mph	M1 A1√	Each quartile within ± 1 mph ± 2 mph
(b)	Number of observed motorcycles breaking speed limit = 2500 - 1050 = 1450 thousand	M1 A1√	± 50 thousand
	% breaking speed limit = $\frac{1450}{2500} \times 100$ = 58%	B 1√	SC2 for $\frac{1050}{2500} \times 100 = 42\%$
	TOTAL	6	

(a)(i)	Mean = 158.235 cm = 158.24 cm (to 2dp)	B2	Allow B1 for 158 or 158.2 cm
(ii)	Standard Deviation = 9.0365 cm = 9.04 cm (to 2 dp)	B2	SC1 in each part for consistent use of upper or lower bounds B1 for 9 or 9.0
(b)	Use of mid-interval values rather than individual values.	B 1	
(c)(i)	On average height increases with age for both girls and boys.	B 1√	
	Girls on average taller at 11 and 12 years, but boys taller at 13 years.	B1 B1√	
(ii)	Standard deviation for boys increases with age implies heights of older boys are more widely spread	B2	B1 for first part only
	TOTAL	10	

(a)	$P(X > 170) = P\left(\frac{X - \mu}{\sigma} > \frac{170 - 159.45}{11.06}\right)$	M1	Standardisation
	= P(Z > 0.95)	A1	or other values rounded from 0.953887884
	$\sigma = 11.06$ 159.45 170 X 0 0.95		
	$= 1 - \Phi (0.95)$	M1	
	= 1 - 0.8289	B 1√	Correct use of tables (Allow value from linear
	= 0.171	A1√`	interpolation)
(b)	Number expected = 1000×0.171	M1	
	= 171	A1 √	Must be rounded to nearest whole number Accept 170
(c)	Number in sample greater than $170 \text{ cm tall} = 150$	B1	
	This is less than expected (ie. Correct comparison with 150)	B 1√	
	Comment on theoretical nature of Normal and/or that	B1	
	actual samples vary	~1	
		10	
	IUIAL	10	
	GRAND TOTAL	60	