Section-B
 Attempt any Ten parts. All parts carry equal marks ($4 \times 10=40$ marks)

Q \# 2(i) Express the expression complex number $(1-\sqrt{3} i)^{5}$ in form of $a+b i$.	Ex 1.3-Exp 5(ii) - p27
(ii) If A and B are non-singular matrices, then show that; $(A B)^{-1}=B^{-1} A^{-1}$	Ex 3.3-17(i) - p114
(iii) Prove that inverse element in a group is unique.	Ex 2.8 -Theorem- p78
(iv) Find the condition that $\frac{a}{x-a}+\frac{b}{x-b}=5$ may have roots equal in magnitude but opposite in signs.	Ex 4.6-5-p164
(v) Resolve $\frac{2}{x^{2}(x+1)}$ into partial fraction.	Ex 5.2 - - p185
(vi) If $\begin{aligned} & a=1-x+x^{2}-x^{3}+\ldots, \\ & b=1+x+x^{2}+x^{3}+\ldots, \end{aligned}$ $x \mid<1$, then show that $2 a b=a+b$.	Ex 6.8 - Exp6-p214
(vii) There are 8 men and 10 women members of a club. How many committees of seven can be formed having at least 4 women?	Ex 7.4-9(iii) - p242
(viii) Find the coefficient of x^{n} in the expansion of $\frac{1-x}{(1+x)^{2}}$	Ex 8.3 - Exp5-p278
(ix) Prove that; $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\tan \theta+\sec \theta .$	Ex 9.4-18-p312
(x) Draw the graph of $y=\sin x$ from -2π to 2π	Ex 11.2- Art 11.5- p343
(xi) Reduce $\sin ^{4} \theta$ to an expression involving only functions of multiples of θ raised to the first power	Ex10.3-14-p332
(xii) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of triangle ABC , and R be the circumradius then Prove that $R=\frac{a b c}{4 \Delta}$.	Ex 12.8- Art-p379
(xiii) Prove that $\tan ^{-1} A+\tan ^{-1} B=\tan ^{-1} \frac{A+B}{1-A B} .$	Ex 13.2 - Pro(v) - p399
(xiv) Solve the equation $\sin 2 x=\cos x$	Ex 14-Exp 4-p404

Section_C Attempt any FIVE questions. All questions carry equal marks ($5 \times 8=40$)	
Q \# 3 : If $S=\{1,-1, i,-i\}$. Set up its multiplication table and show that the set is an abelian group under multiplication.	Ex 2.8 - Exp15- p75
Q \# 4 : Find the value of λ for which the following system does not possess a unique solution. Also solve the system for the value of λ. $x_{1}+4 x_{2}+\lambda x_{3}=2,2 x_{1}+x_{2}-2 x_{3}=11,3 x_{1}+2 x_{2}-2 x_{3}=16$	Ex 3.5-6-p138
Q \# 5 : Solve the equation; $\quad\left\{\begin{array}{l}x^{2}-y^{2}=5 \\ 4 x^{2}-3 x y=18\end{array}\right\}$	Ex 4.9 - Exp3-p171
Q \# 6: If the numbers $\frac{1}{2}, \frac{4}{21}$ and $\frac{1}{36}$ are subtracted from the three consecutive terms of a G.P., the resulting numbers are in H.P. Find the numbers if their product is $\frac{1}{27}$.	Ex 6.10-18-p225
Q \# 7 : Show that: $\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\frac{1}{4}\binom{n}{3}+\ldots+\frac{1}{n+1}\binom{n}{n}=\frac{2^{n+1}-1}{n+1}$	Ex 8.2-14-p274
Q \# 8: Prove without using table/calculator that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{8} .$	Ex 10.4-Exp 5-p335
Q \# 9: Two forces of 20 Newton and 15 Newton, inclined at an angle of 45° are applied at a point on a body. If these forces are represented by two adjacent sides of a parallelogram and their resultant is represented by its diagonal, find the resultant force and also the angle which the resultant makes with the force of 20 Newton.	Ex 12.5-Exp 3-p370

