Section -B (4 $\times 10=40$ marks)

Q \# 2 (i) If $(G, *)$ is a group and $a \in G$, there is a unique inverse of a in G. OR Prove that sum as well as product of any two conjugate complex number is a real number.	Ex 1.3 - Exp5(i) - p27 Ex 2.8 - Th. - p78
(ii) If $A=\left[\begin{array}{cc}i & 1+i \\ 1 & -i\end{array}\right]$, show that $A+(\bar{A})$ is hermitian. OR Which term of the sequence $x^{2}-y^{2}, x+y, \frac{x+y}{x-y}, \ldots$ is $\frac{x+y}{(x-y)^{9}}$.	Ex 3.3-6(ii) - p113 Ex 6.8-6(v)-p215
(iii) Find the value of n when ${ }^{n} P_{4}:{ }^{n-1} P_{3}=9: 1$ OR Using bionomial theorem, find the value of $(0.98)^{\frac{1}{2}}$ up to three places of decimal.	Ex 8.3-2(vi) - p283 Ex 7.8-8-p255
(iv) Find the condition that one root of $x^{2}+p x+q=0$ is double the other.	Ex 4.6-8-p164
(v) Resolve into partial fraction $\frac{7 x+25}{(x+3)(x+4)}$.	Ex 5.2-3-p185
(vi) Find the value of the trigonometric functions of $\frac{-71}{3} \pi$, with out using calculator.	Ex 9.3-6(viii) - p309
(vii) If $\alpha+\beta+\gamma=180^{\circ}$, show that $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$	Ex 10.2-12-p328
(viii) Find the measure of the greatest angle if sides of a triangle are 16, 20, 33.	Ex 12.8 - Exp3-p383
(ix) Solve the equation: $\operatorname{cosec}^{2} \theta=\frac{4}{3}$.	Ex 14-2(i)- p407
(x) Prove that: $2 \operatorname{Tan}^{-1} \frac{2}{3}=\operatorname{Sin}^{-1} \frac{12}{13}$. OR Prove that tangent is periodic function and its period is π.	Ex 13.2 - Exp6(i)- p397 Ex 11.1 - Note(i)-p340 (Not Proved in book)

Section C (40 Marks)

Note: Attempt any four questions. Graph paper will be supplied on demand.
$\left.\begin{array}{l|l}\text { Q \# } 3 \text { (a) Show that } \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}} & 6\end{array}\right)$ Ex 2.4-3(iv)-p55

Q \# 4 (a) Find the value of x if $\left\|\begin{array}{ccc}1 & x-1 & 3 \\ -1 & x+1 & 2 \\ 2 & -2 & x\end{array}\right\|=0$. (b) The area of a rectangular field is 297 square meters. Had it been 3 meter longer and one meter shorter, the area would have been 3 square meter more. Find its length and breadth.	Ex 3.4-10(i)-p127 Ex 4.10-18-p177
Q \# 5 (a) If a, b, c and d are in G.P, show that $a^{2}+b^{2}, b^{2}+c^{2}$, $c^{2}+d^{2}$ are in G.P. (b) Resolve into partial fraction: $\frac{6 x^{3}+5 x^{2}-7}{2 x^{2}-x-1}$.	Ex 6.7-6-p209 Ex 5.3 - Exp2 - p186
Q \# 6 (a) Prove that ${ }^{n-1} C_{r}+{ }^{n-1} C_{r-1}={ }^{n} C_{r}$. (b) If x is so small that its square and higher powers can be neglected. Then show that $\frac{(1+x)^{\frac{1}{2}}(4-3 x)^{\frac{3}{2}}}{(8+5 x)^{\frac{1}{3}}} \approx 4\left(1-\frac{5}{6} x\right)$	Ex 7.2-13-p236 Ex 8.3-12-p284
Q \# 7 (a) Prove without using calculator, that $\sin 19^{\circ} \sin 11^{\circ}+\sin 71^{\circ} \sin 11^{\circ}=\frac{1}{2}$ (b) Reduce $\cos ^{4} \theta$ to an expression involving only functions of multiple of θ, raised to the first power.	Ex 10.2 - Exp5(ii) p324 Ex 10.3-14-p332
Q \# 8 (a) Draw graph of $y=\tan x, x \in[-\pi, \pi]$. (b) With usual notation, prove that; $r=\frac{\Delta}{s}$.	Ex 11.2-1(vi) - p351 Ex 12.8 - Art - p381
Q\# 9 (a) Show that $\cos \left(2 \sin ^{-1} x\right)=1-2 x^{2}$ (b) Find the solution set of $\sin 2 x+\cos x=0$.	Ex 13.2 - Exp6 - p399 Ex 14-12-p407

Chart between questions from exercises and examples (not from exercises)

