Federal Board - Arrual 2006 Paper I

Mathematics Paper-I , Time Allowed: 2.40 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section –B ($4 \times 10 = 40$ marks)	
Q # 2 (i) If $(G,*)$ is a group and $a \in G$, there is a unique inverse of a in G	Ex 1.3 – Exp5(i) – p27
OR Prove that sum as well as product of any two conjugate complex number is a real number.	Ex 2.8 – Th. – p78
(ii) If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, show that $A + (\overline{A})$ is hermitian.	Ex 3.3 – 6(ii) – p113
OR Which term of the sequence $x^2 - y^2$, $x + y$, $\frac{x + y}{x - y}$, is $\frac{x + y}{(x - y)^9}$.	Ex 6.8 – 6(v) – p215
(iii) Find the value of <i>n</i> when ${}^{n}P_{4}: {}^{n-1}P_{3} = 9:1$	Ex 8.3 – 2(vi) – p283
OR Using bionomial theorem, find the value of $(0.98)^{\frac{1}{2}}$ up to three	
	Ex 7.8 – 8 – p255
(iv) Find the condition that one root of $x^2 + px + q = 0$ is double the other.	Ex 4.6 – 8 – p164
(v) Resolve into partial fraction $\frac{7x+25}{(x+3)(x+4)}$.	Ex 5.2 – 3 – p185
(vi) Find the value of the trigonometric functions of $\frac{-71}{3}\pi$, with out	Ex 9.3 – 6(viii) – p309
using calculator.	
(vii) If $\alpha + \beta + \gamma = 180^\circ$, show that $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$	Ex 10.2 – 12 – p328
(viii) Find the measure of the greatest angle if sides of a triangle are 16, 20, 33.	Ex 12.8 – Exp3 – p383
(ix) Solve the equation: $\csc^2 \theta = \frac{4}{3}$.	Ex 14 – 2(i) – p407
(x) Prove that: $2Tan^{-1}\frac{2}{3} = Sin^{-1}\frac{12}{13}$.	Ex 13.2 – Exp6(i)- p397
OR Prove that tangent is periodic function and its period is π .	Ex 11.1 – Note(i)-p340 (Not Proved in book)

Section C (40 Marks)

Note: Attempt any four questions. Graph paper will be supplied on demand.

Q # **3** (a) Show that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ **6 Ex 2.4 – 3(iv) – p55 6 Ex 1.3 – Exp3 – p24**

Q # 4 (a) Find the value of x if $\begin{vmatrix} 1 & x-1 & 3 \\ -1 & x+1 & 2 \\ 2 & -2 & x \end{vmatrix} = 0.$	Ex 3.4 – 10(i) – p127
(b) The area of a rectangular field is 297 square meters. Had it been 3 meter longer and one meter shorter, the area would have been 3 square meter more. Find its length and breadth.	¹ Ex 4.10 – 18 – p177
Q # 5 (a) If <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are in G.P, show that $a^2 + b^2$, $b^2 + c^2$,	Ex 6.7 – 6 – p209
$c^2 + d^2$ are in G.P.	4
(b) Resolve into partial fraction: $\frac{6x^3 + 5x^2 - 7}{2x^2 - x - 1}$.	Ex 5.3 – Exp2 – p186
Q # 6 (a) Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$.	Ex 7.2 – 13 – p236
(b) If x is so small that its square and higher powers can be neglected. Then show that $\frac{(1+x)^{\frac{1}{2}}(4-3x)^{\frac{3}{2}}}{(8+5x)^{\frac{1}{3}}} \approx 4\left(1-\frac{5}{6}x\right)$	Ex 8.3 – 12 – p284
Q # 7 (a) Prove without using calculator, that $\sin 19^{\circ} \sin 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$ (b) Reduce $\cos^{4} \theta$ to an expression involving only functions of multiple of θ , raised to the first power.	Ex 10.2 - Exp5(ii) - p324 Ex 10.3 - 14 - p332
Q # 8 (a) Draw graph of $y = \tan x$, $x \in [-\pi, \pi]$.	4 Ex 11.2 – 1(vi) – p351
(b) With usual notation, prove that; $r = \frac{\Delta}{s}$.	5 Ex 12.8 – Art – p381
Q # 9 (a) Show that $\cos(2\sin^{-1}x) = 1 - 2x^2$	4 Ex 13.2 - Exp6 - p399
(b) Find the solution set of $\sin 2x + \cos x = 0$.	5 Ex 14 - 12 - p407

Chart between questions from exercises and examples (not from exercises)

For more news and updates visit http://www.mathcity.org If you have a question; ask at http://forum.mathcity.org