| Section - B ( $4 \times 10=\mathbf{4 0}$ marks) |  |
| :---: | :---: |
| Q \# 2 (i) By using De Moivre's theorem, find real and imaginary parts of $(\sqrt{3}+i)^{3}$. <br> OR Prove that every element of a group $(G, *)$ has a unique inverse. | Ex 1.3 - Exp5(i) - p27 <br> Ex 2.8 - Th. - p78 |
| (ii) Find the value of $x$ if $\left\|\begin{array}{ccc}1 & x-1 & 3 \\ -1 & x+1 & 2 \\ 2 & -2 & x\end{array}\right\|=0$. <br> OR Find a vulgar fraction equivalent to the recurring decimal $0.1 \dot{5} \dot{9}$ | Ex 3.3-6(ii) - p113 <br> Ex 6.8-6(v) - p215 |
| (iii) Using binomial theorem, find the value of $\frac{1}{\sqrt[3]{998}}$ to three places of decimals. <br> OR Find the probability that the sum of dots appearing in two successive throws of two dice is every time 7 . | Ex 8.3-2(vi) - p283 <br> Ex 7.8-8-p255 |
| (iv) If $\alpha, \beta$ are the roots of $5 x^{2}-x-2=0$, form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$. | Ex 4.6-8-p164 |
| (v) Resolve $\frac{4 x}{(x+1)^{2}(x-1)}$ into partial fraction. | Ex 5.2-3-p185 |
| (vi) Find the value of the trigonometric functions of $\frac{-71}{6} \pi$, with out using calculator. | Ex 9.3-6(viii) - p309 |
| (vii) If $\alpha, \beta, \gamma$ are the angles of a triangle $A B C$, Show that; $\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ | Ex 10.2-12-p328 |
| (viii) Prove that: $\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$ | Ex 12.8-Exp3-p383 |
| (ix) Solve the equation: $\tan ^{2} \theta=1 / 3$. | Ex 14-2(i) - p407 |
| (x) Prove that: $\operatorname{Sin}^{-1} x=\frac{\pi}{2}-\operatorname{Cos}^{-1} x$ OR Show that cosine function is periodic of period $2 \pi$. | Ex 13.2 - Exp6(i)-p397 <br> Ex 11.1 - Note(i)-p340 (Not Proved in book) |

Chapter 01 to 08 (72 Marks)
XXXXXXXXXXXXXXXXXXX
Chapter 09 to 14 (54 Marks)


## Section C ( 40 Marks )

Note: Attempt any four questions. Graph paper will be supplied on demand.

Q \# 3 (a) Define a tautology and prove that $\sim q \wedge(p \rightarrow q) \rightarrow \sim p$ is a tautology.
(b) Show that $\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$, for nay complex numbers $z_{1}$ and $z_{2}$.

Ex 2.4-3(iv) - p55

Ex 1.3-Exp3-p24

Ex 3.4 - 10(i) - p127

Ex 4.10-18-p177 alone take twice as long as $B$ alone to finish the same job. How long would each one alone take to do the job?

Q \# 5 (a) For what value of $n$ is $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$, the positive G.M between $a$ and $b$.
(b) If $2 y=\frac{1}{2^{2}}+\frac{1 \cdot 3}{2!} \cdot \frac{1}{2^{4}}+\frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{2^{6}}+\ldots \ldots$,
then prove that; $4 y^{2}+4 y-1=0$.
Q \# 6 (a) Find the number of arrangements of 3 books on English and 5 books on Urdu for placing them on a shelf such that the books on the same subject are together.
(b) If $x$ is nearly equal to 1 , then prove that

$$
\begin{equation*}
p x^{p}-q x^{q} \approx(p-q) x^{p+q} \tag{6}
\end{equation*}
$$

Q \# 7 (a) If $\alpha, \beta, \gamma$ are angles of a triangle $A B C$, prove that

$$
\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\alpha}{2}+\tan \frac{\gamma}{2} \tan \frac{\gamma}{2}=1
$$

(b) Reduce $\sin ^{4} \theta$ to an expression involving only functions of multiple of $\theta$, raised to the first power.

|  | 5 | Ex |
| :---: | :---: | :---: |
| Q\#8(a) Draw graph of $y=\cos \frac{x}{2}, x \in[-\pi, \pi]$. <br> (b) With usual notation, prove that; $r_{2}=\frac{\Delta}{s-b}$. | 4 | Ex 11.2-1(vi) - p351 Ex 12.8-Art-p381 |
| Q\#9 (a) Prove that $\tan ^{-1} A+\tan ^{-1} B=\tan ^{-1}\left(\frac{A-B}{1+A B}\right)$. <br> (b) Find the solution set of the equation; $\tan 2 \theta+\cot \theta=0$ | 4 | Ex 13.2-Exp6-p399 Ex 14-12-p407 |




Chart between questions from exercises and examples (not from exercises)

