Merging man and maths

Federal Board - Arrual 2005 Paper I

Mathematics Paper-I , Time Allowed: 2.40 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section –B (4 × 10 =40 marks)	
Q # 2 (i) By using De Moivre's theorem, find real and imaginary parts of $(\sqrt{3} + i)^3$. OR Prove that every element of a group (<i>G</i> ,*) has a unique inverse.	Ex 1.3 – Exp5(i) – p27 Ex 2.8 – Th. – p78
(ii) Find the value of x if $\begin{vmatrix} 1 & x-1 & 3 \\ -1 & x+1 & 2 \\ 2 & -2 & x \end{vmatrix} = 0.$	Ex 3.3 – 6(ii) – p113
OR Find a vulgar fraction equivalent to the recurring decimal $0.\dot{1}\dot{5}\dot{9}$	Ex 6.8 – 6(v) – p215
(iii) Using binomial theorem, find the value of $\frac{1}{\sqrt[3]{998}}$ to three places	Ex 8.3 – 2(vi) – p283
of decimals. OR Find the probability that the sum of dots appearing in two successive throws of two dice is every time 7.	Ex 7.8 – 8 – p255
(iv) If α , β are the roots of $5x^2 - x - 2 = 0$, form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$.	Ex 4.6 – 8 – p164
(v) Resolve $\frac{4x}{(x+1)^2(x-1)}$ into partial fraction.	Ex 5.2 – 3 – p185
(vi) Find the value of the trigonometric functions of $\frac{-71}{6}\pi$, with out using calculator.	Ex 9.3 – 6(viii) – p309
(vii) If α , β , γ are the angles of a triangle <i>ABC</i> , Show that; $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$	Ex 10.2 – 12 – p328
(viii) Prove that: $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$	Ex 12.8 – Exp3 – p383
(ix) Solve the equation: $\tan^2 \theta = \frac{1}{3}$.	Ex 14 – 2(i) – p407
(x) Prove that: $Sin^{-1}x = \frac{\pi}{2} - Cos^{-1}x$	Ex 13.2 – Exp6(i)-p397
OR Show that cosine function is periodic of period 2π .	Ex 11.1 – Note(i)-p340 (Not Proved in book)
Chapter 01 to 08 (72 Marks)	

Relation between trigonometric and non-trigonmetric portion.

Section C (40 Marks)	
Note: Attempt any four questions. Graph paper will be supplied on demand.	
Q # 3 (a) Define a tautology and prove that $\sim q \land (p \rightarrow q) \rightarrow \sim p$ is a tautology. 6	Ex 2.4 – 3(iv) – p55
(b) Show that $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$, for nay complex numbers z_1 and z_2 .	Ex 1.3 – Exp3 – p24
Q # 4 (a) Define rank of matrix and find rank of $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & -6 & 5 & 1 \\ 3 & 5 & 4 & -3 \end{bmatrix}$. (b) To complete a job, <i>A</i> and <i>B</i> take 4 days working together, <i>A</i> alone take twice as long as <i>B</i> alone to finish the same job. How long would each one alone take to do the job? 5	Ex 3.4 – 10(i) – p127 Ex 4.10 – 18 – p177
Q # 5 (a) For what value of <i>n</i> is $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$, the positive G.M	Ex 6.7 – 6 – p209
$a^{n-1} + b^{n-1} = 1$ between <i>a</i> and <i>b</i> . (b) If $2y = \frac{1}{2^2} + \frac{1 \cdot 3}{2!} \cdot \frac{1}{2^4} + \frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{2^6} + \dots$, then prove that; $4y^2 + 4y - 1 = 0$.	Ex 5.3 – Exp2 – p186
Q # 6 (a) Find the number of arrangements of 3 books on English and 5 books on Urdu for placing them on a shelf such that the books on the same subject are together. 4 (b) If x is nearly equal to 1, then prove that $px^{p} - qx^{q} \approx (p-q)x^{p+q}$. 6	Ex 7.2 – 13 – p236 Ex 8.3 – 12 – p284
Q # 7 (a) If α , β , γ are angles of a triangle <i>ABC</i> , prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\alpha}{2} + \tan \frac{\gamma}{2} \tan \frac{\gamma}{2} = 1$ 5 (b) Reduce $\sin^4 \theta$ to an expression involving only functions of	Ex 10.2 – Exp5(ii) – p324
multiple of θ , raised to the first power. 5	Ex 10.3 – 14 – p332
Q # 8 (a) Draw graph of $y = \cos \frac{x}{2}, x \in [-\pi, \pi].$ 4	Ex 11.2 – 1(vi) – p351
(b) With usual notation, prove that; $r_2 = \frac{\Delta}{s-b}$.	Ex 12.8 – Art – p381
Q # 9 (a) Prove that $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A - B}{1 + AB} \right).$ 4	Ех 13.2 – Ехр6 – р399
(b) Find the solution set of the equation; $\tan 2\theta + \cot \theta = 0$ 6	Ex 14 – 12 – p407
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Chart between Chapters and Marks} \\ 16 \\ 14 \\ 12 \\ 10 \\ 10 \\ 10 \\ 8 \\ 8 \\ 6 \\ 10 \\ 10 \\ 10 \\ 8 \\ 8 \\ 6 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	45 Questions Examples

9 10 11 12 13 14

4 -2 -0 -

2

1

3 4

56

78 Chapters

Chart between questions from exercises and examples (not from exercises)

81