Section - B ($\mathbf{4} \times \mathbf{1 0}=\mathbf{4 0}$ marks)

Q \# 2 (i) Simply $(3-\sqrt{-4})^{3}$	Ex 1.3-7(viii) - p28
OR Construct a truth table of $[(p \rightarrow q) \wedge p] \rightarrow q$.	Ex 2.4-Exp4-p53
(ii) Without expansion show that $\left\|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right\|=0$ OR Find A, G, H and verify that $A>G>H(G>0)$ if $a=2, b=8$.	Ex 3.3-5(v)-p113 Ex 6.10-14(i) - p225
(iii) Determine the middle term in $\left(\frac{3}{2} x-\frac{1}{3 x}\right)^{11}$ OR Find n and r when ${ }^{n-1} C_{r-1}:{ }^{n} C_{r}:{ }^{n+1} C_{r+1}=3: 6: 11$.	Ex 8.2 - 10(ii) - p274 Ex $7.4-3$ (ii) - p242
(iv) Find period and domain of $5 \tan \frac{x}{7}$ OR Show that $\cos ^{-1}(-x)=\pi-\cos ^{-1} x$.	Ex 11.1- New - p341 Ex 13.2-18-p400
(v) Show that the roots of $x^{2}+(m x+c)^{2}=a^{2}$ will be equal if $c^{2}=a^{2}\left(1+m^{2}\right)$.	Ex 4.7-5-p167

(vi) Resolve $\frac{3 x-11}{\left(x^{2}+1\right)(x+3)}$ into partial fraction.

(vii) Prove that $\frac{1+\cos \theta}{1-\cos \theta}=(\operatorname{cosec} \theta+\cot \theta)^{2}$	Ex 10.2-5-p327
(viii) Prove that; $\frac{\sin 3 \theta}{\cos \theta}+\frac{\cos 3 \theta}{\sin \theta}=2 \cot 2 \theta$	Ex 9.4-13-p312
(ix) Find the smallest angle of the triangle $A B C$ when $a=37.34, b=3.24, c=35.06$	Ex 12.6-6-p373
(x) Solve; $\sin 2 x+\sin x=0$	Ex 14-13-p407

Section C (40 Marks (5+5 each))	
Note: Attempt any four questions. Graph paper will be supplied on demand.	
Q \# 3 (a) If $z_{1}=2+i, z_{2}=3-2 i, z_{3}=1+3 i$, find real and	Ex 1.3- Exp2 - p25
imaginary part of $\frac{z_{1}}{z_{2}}$.	
(b) Convert $(A \cap B) \cap C=A \cap(B \cap C)$ to logical form and prove by constructing a truth table.	Ex 2.5-3-p57

Q \# 4 (a) Solve; $x+2 y+z=2,2 x+y+2 z=-1,2 x+3 y-z=9$ (b) Solve; $\left(x+\frac{1}{x}\right)^{2}-3\left(x+\frac{1}{x}\right)-4=0$	Ex 3.5-3(ii) - p138 Ex 4.2-18-p147
Q \# 5 (a) Resolve $\frac{2 x-5}{\left(x^{2}+2\right)^{2}(x-2)}$ into partial fraction. (b) If S_{1}, S_{3}, S_{5} are the sums of $2 n, 3 n, 5 n$ terms of an A.P. Show that $S_{5}=5\left(S_{3}-S_{2}\right)$.	Ex 5.3-3-p188 Ex 6.4-8-p199
Q \# 6 (a) Two dice are thrown twice, What is probability that the sum of the dots in the first throw is 7 and that of the $2^{\text {nd }}$ throw is 11 ? (b) Show that $\left[\frac{n}{2(n+N)}\right]^{1 / 2} \approx \frac{8 n}{9 n-N}-\frac{n+N}{4 n}$, where n and N are nearly equal.	Ex 7.8-7-p255 Ex 8.3-8-p284
Q \# 7 (a) Without using calculator/tables, prove that $\sin 19^{\circ} \cos 11^{\circ}+\sin 71^{\circ} \sin 11^{\circ}=\frac{1}{2}$ (b) If $\tan \theta=8 / 15$ and the terminal arm of the angle is in $3^{\text {rd }}$ quadrant. Find the value of other trigonometric functions of θ.	Ex 10.4-Exp2-p334 Ex 9.2-Exp1-p299
Q \# 8 (a) Draw graphs of $y=\sin x$ and $y=\sin 2 x$ on the same axes and to the same scale for their complete period. (b) Two men are on the opposite sides of a 100 m high tower. If the measure of the angles of elevation of the top of the tower are 18° and 22° respectively. Find the distance between them.	Ex 12.2-2(i) - p351 Ex 12.3-10-p360
Q\#9 (a) Prove that $\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}=\frac{\pi}{2}$ (b) Solve $\tan ^{2} \theta-\sec \theta-1=0$	Ex 13.2-10-p400 Ex 14-4-p407

Algebra (ch. 1 to 8) ... 72 Marks
$\times 8 \times 8$
Trigonometry (Ch. 9 to 14) ... 54 Marks
$\times 8 \times 8$
Relation between Algebraic \& Trigonometric portion.

