Section - B ($4 \times 10=40$ marks)

Section - $\mathbf{~ (~} 4 \times 10=40$ marks)	
Q \# 2 (i) Show that $\sim q \wedge(p \rightarrow q) \rightarrow \sim p$ is a tautology. OR Find λ if matrix $A=\left[\begin{array}{lll}4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1\end{array}\right]$ is singular.	Ex 2.4-3(iv) - p54 Ex 3.3-11(i) - p114
(ii) If α and β are the roots of $a x^{2}+b x+c=0$, find the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. OR Show that the roots of $x^{2}+(m x+c)^{2}=a^{2}$ will be equal if $c^{2}=a^{2}\left(1+m^{2}\right)$.	Ex 4.6-7(ii) - p164 Ex 4.7-5-p167
(iii) Resolve $\frac{1}{x^{2}-1}$ into partial fraction. OR Which term of the $-2,4,10, \ldots$. is 148 ?	Ex 5.1-1-p183 Ex 6.2-7-p194
(iv) Find the sum of the n terms of the series whose nth term is $n^{2}+4 n+1$ OR How many signals can made with 4 different flag when any number of them are to be used at a time?	Ex 6.11-15(ii) - p229 Ex 7.2 - Exp2- p234
(v) Expand; $(a+2 b)^{5}$.	Ex 8.2 - 1(i) - p273
(vi) Find the trigonometric function of 765°	Ex 9.3-6(iii) - p309
(vii) Show that $\cos (\alpha+\beta) \cdot \cos (\alpha-\beta)=\cos ^{2} \beta-\cos ^{2} \alpha$	Ex 10.2-5-p327
(viii) A vertical pole is $8 m$ high and the length of its shadow is $6 m$. What is the angle of elevation of the sun at the time?	Ex 12.3-1-p359
(ix) Find the greatest angle of the triangle if the sides of the triangle are $16,20,33$.	Ex 12.6-7-p373
(x) Solve; $2 \sin \theta+\cos ^{2} \theta-1=0$.	Ex 14-5-p407

Section C (40 Marks (5+5 each))

Note: Attempt any four questions. Graph paper will be supplied on demand.
Q \# 3 (a) Prove that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
(b) Solve the following equations

$$
2 x+2 y+z=3, \quad 3 x-2 y-2 z=1, \quad 5 x+y-3 z=2
$$

Q \# 4 (a) Show that the roots of the equation

$$
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 \text { are real. }
$$

(b) Solve the equations: $x^{2}-5 x y+6 y^{2}=0, x^{2}+y^{2}=45$.

Ex 2.3-prop (i)-p42
Ex $3.5-1-\mathrm{p138}$
Ex 4.7-Exp3-p166
Ex 4.9-4-p172

Q \# 5 (a) Resolve $\frac{9 x-7}{\left(x^{2}+1\right)(x+3)}$ into partial fraction. (b) The sum of an infinite geometric series is 9 and the sum of square of its term is $81 / 5$. Find the series.	Ex 5.3-1-p187 Ex 6.8-14-p216
Q \# 6 (a) Prove that ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$. (b) If x is nearly equal to 1 , then prove that $p x^{p}-q x^{q} \approx(p-q) x^{p+q}$.	Ex 7.4-10-p242 Ex 8.3-6-p284
Q \# 7 (a) Prove that $\sin \frac{\pi}{9} \cdot \sin \frac{2 \pi}{9} \cdot \sin \frac{\pi}{3} \cdot \sin \frac{4 \pi}{9}=\frac{3}{16}$. (b) Draw the graph of $y=\cos \frac{x}{2} \quad ; x \in[-\pi, \pi]$.	Ex 10.4-5(ii) - p336 Ex 11.2-1(vi) - p351
Q \# 8 (a) Solve the triangle $A B C$ when $a=28.3, b=31.7, c=42.8$. (b) Show that $\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$.	Ex 12.6-3-p373 Ex 12.8-Exp3-p383
Q \# 9 (a) Show that $\sin ^{-1} \frac{77}{85}-\sin ^{-1} \frac{3}{5}=\cos ^{-1} \frac{15}{17}$ (b) Solve; $4 \sin ^{2} \theta-8 \cos \theta+1=0$	Ex 13.2-7-p400 Ex 14-8-p407

Chart between Questions from Exercises and Examples

For more news and updates visit http:/ / www.mathcity.org If you have a question; ask at http:/ / forum.mathcity.org

