

International Competitions and Assessments for Schools

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED.

STUDENT'S NAME:

Read the instructions on the **ANSWER SHEET** and fill in your **NAME, SCHOOL** and **OTHER INFORMATION**.

Use a 2B or B penci

Do **NOT** use a pen.

Rub out any mistakes completely

You MUST record your answers on the ANSWER SHEET.

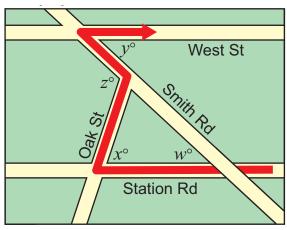
MATHEMATICS

Mark only **ONE** answer for each question. Your score will be the number of correct answers Marks are **NOT** deducted for incorrect answers.

MULTIPLE-CHOICE QUESTIONS:

Use the information provided to choose the **BEST** answer from the four possible options.

On your ANSWER SHEET fill in the oval that matches your answer.


FREE-RESPONSE QUESTIONS:

Write your answer in the boxes provided on the **ANSWER SHEET** and fill in the oval that matches your answer.

You may use a ruler and spare paper. A **CALCULATOR** is required.

Educational Assessment

1. Terry is in Station Rd and is going to a party in West St, which runs parallel to Station Rd. The angles between some of the streets are shown.

NOT TO SCALE

Which of these statements must be true?

(A)
$$w = y$$

(B)
$$x = w$$

(C)
$$y = x$$

(D)
$$z = y$$

2. A company uses this formula to predict total profit P based on the number of products n sold.

$$P = n^2 + 60n - 4000$$


How many products are sold if there is zero profit?

3.

7.101 ÷ (3.019 -

Student Bounty.com What is the value of this expression correct to three significant figures?

- (A) 3.19
- (B) 3.197
- (C) 3.20
- (D) 3.200
- This scatter diagram shows the 4. relationship between the air temperature T and the number of people P visiting a beachside shopping centre.

Air temperature (T)

Which formula could describe the relationship between the air temperature and the number of people?

(A)
$$P = 5T^2$$

(B)
$$P = -5T$$

(C)
$$P = -\frac{T}{5}$$

(D)
$$P = \frac{5}{T}$$

QUESTION 5 IS FREE RESPONSE.

Write your answer in the boxes provided on the ANSWER SHEET and fill in the ovals that match your answer.

5. Mario knows that a number is divisible by nine if the sum of its digits is divisible by nine.

He has eight cards with the digits 1 to 8 written on them as shown.

Mario selects three of these cards to make a three-digit number that is divisible by nine. He then replaces these three cards and repeats this selection procedure to select different three-digit numbers divisible by nine.

How many **even** three-digit numbers is it possible for him to find in this way?

Student Bounts, com

Acknowledgment

Copyright in this booklet is owned by Educational Assessment Australia, UNSW Global Pty Limited, unless otherwise indicated. Every effort has been made to trace and acknowledge copyright. Educational Assessment Australia apologises for any accidental infringement and welcomes information to redress the situation.

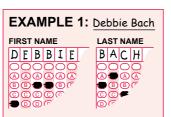
Student Bounty.com

The following year levels should sit THIS Paper:

Australia	Year 11
Brunei	Pre-University 1
Indonesia	Year 12
Malaysia	Form 5 & Lower 6
New Zealand	Year 12
Pacific	Year 11
Singapore	Secondary 4 & 5
South Africa	Grade 11

Educational Assessment Australia eaa.unsw.edu.au © 2012 Educational Assessment Australia. EAA is an education group of UNSW Global Pty Limited, a not-for-profit provider of education, training and consulting services and a wholly owned enterprise of the University of New South Wales. ABN 62 086 418 582

PAPER



HOW TO FILL OUT THIS SHEET:

- Rub out all mistakes completely.
- Print your details clearly in the boxes provided.
- Make sure you fill in only one oval in each column.

EXAMPLE 2: Chan Ai Beng									
FIRST NAME	LAST NAME								
CHAN	AIBENG								
0000	000000								
A A C									
BBBC	BBB								
● © @	000000								
D C									
© ←									

E	EXAMPLE 3: Jamal bin Abas													
FIR	FIRST NAME LAST NAME													
J	Α	M	Α	L		В	Ι	Ν	7	Α	В	Α	S	7
	ō	O	ō	O	•	O	Ö	O		O	Ö	Ō	Ö	
B	(B)	(A) (B)	_	(A) (B)	_	_	(A) (B)	Œ		B		(B)	(A) (F	
0		ĕ				ō	ল			0	ō	୕		
(D)	(D)	0	(D)	(D)	യ	(1				ம	(D,			

-	RS	Τ	NÆ	۱M	E	to a	app	ea	r o	n c	ert	ific	ate)										 LÆ	S	T 1	۱A	ME	Ξt	о а	p
																															L
\supset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	(
B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	(
0	©	©	©	0	©	©	©	0	©	0	©	0	©	0	©	©	©	©	©	©	©	©	©	©	©	©	©	©	©	0	(
D	((((D)	0	(D)	((((((((D	(D)	D	D	D	D	D	(((((D	(D	((
D	Œ	Œ	E	Œ	E	Œ	E	Œ	E	Œ	E	Œ	E	Œ	E	Œ	E	E	E	E	E	E	E	Œ	Œ	Œ	E	Œ	E	E	(
Ð	F	Ē	F	E	E	E	F	E	(F)	Ē	F	E	(F)	E	F	E	F	F	F	F	F	F	F	F	(F)	F	F	E	(F)	Œ	(
3	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	©	G	G	1
D	\oplus	H	H	H	H	H	\oplus	H	\oplus	\oplus	\oplus	H	\oplus	H	\oplus	H	\oplus	\oplus	\oplus	\oplus	H	\oplus	H	H	\oplus	\oplus	Œ	Œ.	\oplus	Œ	(
)		①	①	①	((1)	(1)	①	①	①	①	①	①	①	(1)	(①		①		\bigcirc		①	((1)	0	(5	①	(
D	J	J	J	J	J	J	J	J	(J)	(J)	J	(J)	J	J	J	(J)	J	J	J	J	J	(J)	J	(J)	9	(v)	0	CD	J	J	(
)	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	(7)	(2)	K	w	K	K	K	(
)		(L)	(L)	(L)	((L)	(L)	(L)	(L)	(L)	(L)	ᡅ	(L)	(L)		(L)		(L)		(L)	(L)		D	D	T	L	(L)	(L)	ᡅ	(L)	(
)	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	رس	ت	Œ,	D	M	M	M	M	M	M	(
)	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	D	N	N	N	N	N	N	N	(
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(C)	0	0	C	<u>~</u>	0	0	0	0	0	0	0	0	(
	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	(7)	1	P	P	P	P	P	P	P	P	P	P	P	(
)	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	2)	0	@	0	@	@	@	@	@	@	@	@	@	@	@	(
)	R	R	R	R	R	R	R	R	R	R	R	R	R	9	5	5	R	(3)	R	R	R	R	R	R	R	R	R	R	R	R	(
)	S	S	S	S	S	S	S	S	S	S	S	S	ತ	3)	S	3)	S	S	S	S	S	S	S	S	S	S	S	S	S	S	(
)	T	T	T	T	T	T	T	T	T	Œ	T	T	T	T	D	Œ	T	T	T	T	T	T	T	T	T	T	T	Œ	T	1	(
D	(U	U	U	U	U	0	(U)	U	(D)	Œ	U	Q	(U)	0	(U)	U	U	(U)	U	U	(U	U	(U	U	((U)	U	(
)	\bigcirc	V	V	V	V	V	V	(V)	\bigcirc	V	7	W	V	V	\bigcirc	V	V	\bigcirc	\bigcirc	\bigcirc	V	\bigcirc	V	V	V	V	V	V	\bigcirc	V	(
D	W	W	W	W	W	W	C1	W	W)	()	W	W	W	W	W	w	W	W	W	W	W	W	W	W	W	W	W	w	W	W	(
0	\otimes	X	\otimes	\otimes	X	A	X	N)	(X)	\otimes	X	\otimes	\otimes	X	\otimes	\otimes	X	\otimes	\otimes	\otimes	\otimes	\otimes	X	\otimes	\otimes	X	X	\otimes	\propto	X	(
)	Y	Y	Y	Y	(Y	(7)	Y	4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	(
0	Z	Z	Z	Z	Z	(F)	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	(
)	•	<u></u>	0	<u></u>	0	0	0	0	•	0	0	0	•	0	1	0	•	<u></u>	1	<u></u>	•	<u></u>	•	<u></u>	•	•	•	0	•	0	(
9	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	(
\bigcirc		\bigcirc				\bigcirc		\bigcirc		\Box		\Box						\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\Box	(7)	\bigcirc	1

ppear on certificate 0000000000 A A A A A A A A A A A B B B B B B B B B 00000000000 F F F F F F F F 0000000000 HHHHHHHHHHHH 000000000000PPPPPPPPP 0 0 0 0 0 0 0 0 0 0 0 0RRRRRRRRRR 8888888888 \bigcirc OOOOOOOOOOOOO0000000000 OOOOOOOOOOO

Are you male Male		
Does anyone Yes	in your home u No	sually speak a language other than English?
School name:		

CLASS (optional)

A K
B C M
C D C C
C D C C

TO ANSWER THE QUESTIONS

MULTIPLE CHOICE

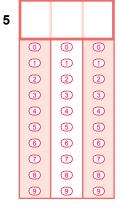
Example: 6 + 4 =

- (A) 2
- (B) 9
- 10

(C) **START** 24 **FREE RESPONSE**

Example: 6 + 6 =

USE 2B OR B PENCIL


- The answer is 12, so WRITE your answer in the boxes.
- Write only ONE digit in each box, as shown, and fill in the correct oval, as shown.

Still de la constant	775	COUL	200	COM
TE your		1	2	
och box, orrect oval,				1

The answer is 10, so fill in the oval ©, as shown.

1	A	B	©	(D)
2	A	B	©	D
3	A	B	©	D
4		<u></u>		(D)

QUESTION	KEY	SOLUTION	STRAND	C OF
1	A	Smith Rd West St West St Station Rd and West St are parallel, while Smith Rd crosses them. This results in angle y and angle w, that are alternate, being equal. Therefore, statement A is the correct statement.	Space and Geometry	Easy
2	В	This is a quadratic equation. It factorises to $(n + 100)(n - 40) = 0$ The solutions for this equation are $n = -100$ and $n = 40$. As n is the number of products, it cannot be negative. Hence, $n = 40$ is the correct solution. Alternatively, substituting the options will show that $n = 40$ gives $P = 0$.	Algebra and Patterns	Easy
3	С	The result of the calculation is 3.197208465. This number rounded to three significant figures is 3.20.	Number and Arithmetic	Medium
4	D	The diagram shows an inverse relation between the air temperature, T, and the number of people, P. As T increases, P decreases. Note that the relation is not linear. Option A is a quadratic equation that gives a parabola when graphed, where the relation is positive (considering positive values of T). This does not describe the given data. Options B and C are both linear equations that give straight lines sloping downwards when graphed. Again, these do not describe the given data. Option D is an equation that gives a hyperbola when graphed. For small values of T, P has a large value. As the values of T increase, the values of P decrease. This correctly describes the given data.	Chance and Data	Medium

Numbers to be considered are numbers with a digit sum that is divisible by 9. So the sum of the digits must be multiples of 9: 9, 18, 27... The highest digit sum that can be obtained from the numbers 1 to 8 is 8 + 7 + 6 = 21. So only numbers whose digits sum to 9 or 18 need to be considered.

The numbers must be even, so they must be of the form: _ 2, _ 4, _ 6 and _ 8.

Take for example _ _ 2. To make this number's digits sum to 9, the first two digits must sum to 7. We can therefore have 342, or 432. We cannot have 252 or 522 as the number 2 cannot be used twice.

This table summarises the solutions.

18

Possible numbers	Sum to 9 First two digits sum to:	Solutions	Sum to 18 First two digits sum to:	Solutions
		432		
2	7	342	16	_
		162		
		612		
4	5	234	14	684
T	J	324	14	864
		126		486
6	3		12	846
6	3	216	12	756
				576
				468
8	1		10	648
8	1	-	10	738
				378

Therefore there are 18 possible numbers that Mario can find.

Note: This is one possible method. The question can be solved using other methods.

Chance and Data

Hard

StudentBounty.com

Level of difficulty refers to the expected level of difficulty for the question.

Easy more than 70% of candidates will choose the correct option

Medium about 50–70% of candidates will choose the correct option

Medium/Hard about 30–50% of candidates will choose the correct option

Hard less than 30% of candidates will choose the correct option