Mark Scheme (Results)
January 2012
Principal Learning
Engineering
EG308 Paper 01
Mathematical Techniques and Applications for Engineers

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code DP030351
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Answer	Mark	
Number	$\mathbf{1}(\mathbf{a)} \mathbf{(i)}$	$v^{2}-u^{2}=2$ as $v^{2}-u^{2}$ $2 s$	

Question Number	Answer	Mark	
$\mathbf{1 (a) (i i)}$	$v^{2}=u^{2}+2$ as $=2^{2}+2 \times 4 \times 16$ $v=\sqrt{ } 132$ allow 11.49		

Question Number	Answer	Mark	
$\mathbf{1 (b)}$	$\log 12=\log x+2 \log 2$		
	$\log 12-\log 2^{2}=\log x$		$\mathbf{1}$
	$\log 12-\log 4=\log x$		$\mathbf{1}$
	$x=3$		
	S.C. If calculated using logs 1 mark only	$\mathbf{1}$	

Question Number	Answer	Mark	
$\mathbf{1 (c)}$	$\frac{T_{1}}{T_{2}}=e^{\text {ü }}$		
	$\frac{400}{175}=e^{\text {u3.22 }}$		$\mathbf{1}$
	In $2.286=3.22 u$		
	$\frac{0.8268}{3.22}=u$		$\mathbf{1}$
	$u=0.2567$		
	allow marks for rounding errors - 2dp		

Question Number	Answer	Mark	
2(a)	 (i) Plotting all five points on the graph (with or without line) or accurate line drawn (ii) $\begin{aligned} & \text { Gradient }=\frac{16-7}{8-2}=1.5 \\ & \text { Intercept }=4, \\ & \text { so equation : } v=1.5 t+4 \end{aligned}$ (iii) v at 22.5 seconds $=(1.5 \times 22.5)+4$ v at 22.5 seconds $=37.75 \mathrm{~ms}^{-1}$ allow follow through	(5)	1 1 1 1 1
Question Number	Answer	Mark	
2(b)	$\begin{aligned} & \pi\left(r h+r^{2}\right) \text { or } r(\pi h+\pi r) \\ & \pi r(h+r) \end{aligned}$	(2)	1

Question Number	Answer	Mark	
$\mathbf{3 (a)}$	tan $16^{\circ}=\frac{h}{100}$ $h=100 \times \tan 16^{\circ}$ $=100 \times 0.2867$		$\mathbf{1}$
	$h=28.67 \mathrm{~m}$		
Sine rule may also be accepted			

Question Number	Answer	Mark		
$\mathbf{3 (b)}$	Horizontal $=v \times \cos 26^{\circ}$ $=60 \times 0.899$ $=53.93 \mathrm{~ms}^{-1}$			$\mathbf{1}$
	Vertical $=$ $v \times \sin 26^{\circ}$ $=60 \times 0.438$ $=26.3 \mathrm{~ms}^{-1}$		$\mathbf{1}$	
			$\mathbf{1 4)}$	$\mathbf{1}$

Question Number	Answer	Mark	
$\mathbf{3 (c)}$	$\left(\right.$ remaining angle $\left.=110^{\circ}\right)$ $\frac{x}{\sin 28^{\circ} \quad=\frac{160}{\sin 110^{\circ}}}$ $x=\frac{160 \times \sin 28^{\circ}}{\sin 110^{\circ}}$ $x=\frac{4480}{0.9396}$ $x=79.9 \mathrm{~mm}$ allow rounding errors		$\mathbf{1}$
		$\mathbf{1}$	

Question Number	Answer	Mark	
$\mathbf{4 (a)}$	Initial plate volume $=70 \times 40 \times 5=14000$		
	Volume of $11 / 2$ holes $=\pi \times 10^{2} \times 5 \times(1.5)$ $=2356.2$		$\mathbf{1}$
	Final volume $=14000-2356.2$		$\mathbf{1}$
	$=11643.8 \mathrm{~mm}^{3}$	$\mathbf{1}$	
		$\mathbf{(4)}$	$\mathbf{1}$

Question Number	Answer	Mark	
4(b)	$\frac{2.25 \times 360}{2 \pi}$		
	$=128.9^{\circ}$		
$=129^{\circ}$	$\mathbf{1}$		
		$\mathbf{(2)}$	$\mathbf{1}$

Question Number	Answer	Mark	
4(c)	$\frac{155 \times 60}{2 \pi}$		$\mathbf{1}$
	$=1480 \mathrm{rev} / \mathrm{min}$	$\mathbf{1}$	

Question	Answer	Mark	
Number			
$\mathbf{5 (a)}$	21	$\mathbf{(1)}$	$\mathbf{1}$

Question Number	Answer	Mark	
$\mathbf{5 (b)}$	values in order or statement that identifies how the answer was found $2,5,5,10,21,21,21,55,60$ middle (median) value $=21$		

Question Number	Answer	Mark	
$\mathbf{5 (c)}$	$2+5+5+10+21+21+21+55+60$		$\mathbf{1}$
	$\frac{200}{9}$		$\mathbf{1}$
	mean $=22.22$	$\mathbf{(3)}$	$\mathbf{1}$

Question Number	Answer	Mark
5 (d)	Explanation with reference to two of the following points: - Refers to a middle or typical value. - Measured using mean, mode or median. - Each calculated differently. - The choice depends on the situation - Affected by the spread/level of standard deviation - Falls between the upper and lower quartiles Any other suitable response 1 mark for each response - maximum 2 marks	(2)

Question Number	Answer	Mark	
$\mathbf{5 (e)}$	One of the following:		
	• Median would decrease		
	• Not a real value		
	• Between 10 and 21		
	Any other suitable response	(1)	

Question Number	Answer	Mark	
6(a)	$\begin{aligned} & \frac{d y}{d x}=3 x^{2} \\ & \frac{d y}{d x}=3 \times 4^{2} \\ & =3 \times 16 \\ & =48 \end{aligned}$	(3)	1 1

Question Number	Answer	Mark	
$\mathbf{6 (b)}$	$\frac{d s}{d t}=6+4 t(1$ mark for each differentiated term)		$\mathbf{1 + 1}$
	$6+(4 \times 2)$ $6+8$ $=14$		$\mathbf{1}$
		$\mathbf{(4)}$	$\mathbf{1}$

Question Number	Answer	Mark	
6(c)	$\begin{aligned} & v=2 t+3 \\ & \int v=\underline{2 t^{2}}+\underline{3 t} \quad(1 \text { mark for each integrated term }) \\ & \left.\quad \int_{0}^{8} v=\frac{\left(2 \times 8^{2}\right.}{2}\right)+(3 \times 8) \\ & s=64+24 \\ & s=88 \mathrm{~m} \end{aligned}$	(4)	$1+1$ 1 1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code DP030351 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

