

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, Chair, State University of New York, Cortland, NY

James Ayers, Mesa State College, Grand Junction, CO
Paul Groves, South Pasadena HS, South Pasadena, CA Sherry Berman-Robinson, Consolidated HS, Orland Park, IL (retired) Preston Hays, Glenbrook South HS, Glenbrook, IL Seth Brown, University of Notre Dame, Notre Dame, IN Peter Demmin, Amherst HS, Amherst, NY (retired)
Marian Dewane, Centennial HS, Boise, ID
Valerie Ferguson, Moore HS, Moore, OK
David Hostage, Taft School, Watertown, CT
Adele Mouakad, St. John's School, San Juan, PR

Kimberly Gardner, US Air Force Academy, Colorado Springs, CO

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron ${ }^{\circledR}$ answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on Part I. Testing materials, scratch paper, and the Scantron sheet should be made available to the student only during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 29, 2009, after which tests can be returned to students and their teachers for further study.
Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed Part I, or after one hour and thirty minutes has elapsed, the student must turn in the Scantron sheet, Part I of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice	1 hour, 30 minutes
Part II	8 questions	problem-solving, explanations	1 hour, 45 minutes
Part III	2 lab problems	laboratory practical	1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use nonprogrammable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after April 29, 2009.
Distributed by the ACS DivCHED Examinations Institute, Iowa State University, Ames, IA.
All rights reserved. Printed in U.S.A.

$R=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{R}^{2}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{R}$
$1 F=96,500 \mathrm{C} \cdot \mathrm{mol}^{-1}$
$1 F=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

EQUATIONS

$$
E=E^{\mathrm{o}}-\frac{R T}{n F} \ln Q \quad \ln K=\left(\frac{-\Delta H}{R}\right)\left(\frac{1}{T}\right)+\text { constant } \quad \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark vei
- There is only one correct answer to each question. Any questions for which more than one response has been blackened be counted.

Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.

1. Which oxide produces an acidic solution when mixed with water?
(A) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(B) CaO
(C) CO
(D) SO_{2}
2. Which gas should not be collected over water due to its high solubility in water?
(A) H_{2}
(B) N_{2}
(C) NH_{3}
(D) CH_{4}
3. Which procedure(s) will allow a student to differentiate between solid sodium sulfate and solid sodium sulfite?
I. Make solutions of each and look for a precipitate when added to $0.10 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$.
II. Add crystals of each to 0.10 M HCl and watch for bubbles.
III. Make solutions of each and test with a pH indicator.
(A) I only
(B) III only
(C) I and II only
(D) II and III only
4. A student gets fingerprints on a cuvette before using it to determine the concentration of a colored species using its known extinction coefficient. What is the effect on the absorbance and reported concentration?

absorbance reported concentration

(A) increased too low
(B) increased too high
(C) decreased too low
(D) decreased too high
5. Chemicals A and B each initially at $20^{\circ} \mathrm{C}$ react exothermically. A graph of the final temperature reached by mixing equimolar solutions of A and B to a total of 100 mL is given to the right. According to this graph, in what mole ratio do A and B react?

6. What color does the strontium ion produce in a flame test?
(A) red
(B) blue
(C) green
(D) yellow
7. What is the mass percent

Formula Weight, \mathbf{g}	
$\mathrm{UO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad 573$	

$\mathrm{UO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$?
(A) 5.58%
(B) 16.8%
(C) 22.3%
(D) 39.1%
8. A 25.0 mL sample of waste water is obtained to analyze for Pb^{2+} ions. This sample is evaporated to dryness and redissolved in 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$, mixed with 2.0 mL of a buffer solution and 2.0 mL of a solution of dithizone then diluted to 10.0 mL . The absorbance of the colored Pb^{2+} dithizone complex is compared with the Beer-Lambert plot below.

The absorbance of a portion of the final solution is 0.13 . What is the concentration of Pb^{2+} ions in the waste water in ppm?
(A) 2.9
(B) 7.2
(C) 18
(D) 36
9. Reductic acid contains 52.63% carbon, 5.30% hydrogen, and 42.07% oxygen. Its empirical formula is the same as its molecular formula. What is the number of carbon atoms in a molecule of this acid?
(A) 4
(B) 5
(C) 6
(D) 8
10. Sulfur trioxide, SO_{3}, is made by oxidizing sulfur dioxide, SO_{2}, according to the equation, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$. If a 16.0 g sample of SO_{2} yields 18.0 g of SO_{3}, what is the percent yield?
(A) 70.0%
(B) 80.0%
(C) 90.0%
(D) $100 . \%$
(A) $2: 1$
(B) $3: 1$
(C) $4: 1$
(D) $3: 2$
11. A 1.0 g sample of which substance contains the largest number of molecules?
(A) HN_{3}
(B) $\mathrm{N}_{2} \mathrm{H}_{4}$
(C) $\mathrm{H}_{2} \mathrm{O}_{2}$
(D) HCl
12. What is the maximum mass of PbI_{2} that can be

Molar Mass, $\mathbf{g} \cdot$ mol $^{-1}$	
PbI_{2}	461

(A) 0.807 g
(B) 1.15 g
(C) 1.61 g
(D) 2.30 g
13. Which statement is not a principle (postulate) of kinetic molecular theory?
(A) The molecules of a gas are in rapid random motion.
(B) The molecules of an ideal gas exhibit no attractive forces.
(C) The collisions of gaseous molecules with one another and the walls of their container are elastic.
(D) Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.
14. When a sample of an ideal gas is heated from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ the average kinetic energy of the molecules increases. Which ratio gives the correct relationship between the average kinetic energies at the higher temperature to the lower temperature?
(A) $2: 1$
(B) $\sqrt{2}: \sqrt{1}$
(C) $323: 298$
(D) $\sqrt{323}: \sqrt{298}$
15. A partially filled tank of propane contains both a liquid and a gas phase. Which of these statements about the contents of the two phases are correct?
I. The two phases have the same potential energy but different kinetic energies.
II. The two phases have the same molar masses but different densities.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
16. Which property or
I. electrical conductivity properties of metals can be
II. malleability accounted for by the electron sea model?
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
17. In a crystal of a typical metallic element, an atom has how many nearest neighbors?
(A) 4
(B) 6
(C) 12
(D) 16
18. Which aqueous solution has the higho at $25^{\circ} \mathrm{C}$? (Assume all ionic compounds i in solution.)
(A) $0.1 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(B) $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{C}$
(C) $0.2 \mathrm{M} \mathrm{KMnO}_{4}$
(D) $0.3 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
19. Which statement is correct at $25^{\circ} \mathrm{C}$ and 1 atm pressure?
(A) $\Delta G_{\mathrm{f}}^{\circ}$ for $\mathrm{Hg}(\mathrm{l})=0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
(B) $\Delta H_{\mathrm{f}}^{\circ}$ for $\mathrm{I}_{2}(\mathrm{~g})=0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
(C) $\Delta H_{\mathrm{f}}^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
(D) S° for $\mathrm{O}_{2}(\mathrm{~g})=0 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
20. What is the relationship among the magnitudes of the enthalpies of combustion $\left(\Delta H_{\text {comb }}\right)$, fusion $\left(\Delta H_{\text {fus }}\right)$ and vaporization ($\Delta H_{\text {vap }}$) for a hydrocarbon such as hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$?
(A) $\Delta H_{\text {fus }}<\Delta H_{\text {comb }}<\Delta H_{\text {vap }}$
(B) $\Delta H_{\text {vap }}<\Delta H_{\text {fus }}<\Delta H_{\text {comb }}$
(C) $\Delta H_{\text {comb }}<\Delta H_{\text {vap }}<\Delta H_{\text {fus }}$
(D) $\Delta H_{\text {fus }}<\Delta H_{\text {vap }}<\Delta H_{\text {comb }}$
21. Which choice represents the signs for ΔS and ΔH for the sublimation of a compound that is occurring at constant temperature?
(A) $\Delta S<0, \Delta H<0$
(B) $\Delta S<0, \Delta H>0$
(C) $\Delta S>0, \Delta H>0$
(D) $\Delta S>0, \Delta H<0$
22. Determine ΔH_{rxn} for this reaction in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$
$2 \mathrm{NH}_{3}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$

$\boldsymbol{\Delta \boldsymbol { H } _ { \mathbf { f } } , \mathbf { k J } ^ { 2 } \cdot \mathbf { m o l } ^ { \mathbf { 1 } }}$	
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.1
$\mathrm{NO}(\mathrm{g})$	90.3

(A) -105.4
(B) -226.3
(C) -452.6
(D) -637.0
23. The enthalpy of fusion for $\mathrm{NaF}(\mathrm{s})$ at its melting point $\left(992^{\circ} \mathrm{C}\right)$ is $29.3 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. What is the value of $\Delta S_{\text {fus }}{ }^{\circ}$ in $\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$?
(A) 43.2
(B) 33.9
(C) 29.5
(D) 23.2
24. For the reaction at $25^{\circ} \mathrm{C}$,
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$K_{\mathrm{p}}=5.67 \times 10^{7}$
What is ΔG° for this reaction in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$?
(A) -0.436
(B) -3.71
(C) -19.2
(D) -44.2
25. What is the rate law for a reaction, $A+2 B \rightarrow C$, based on the rate data?

$[\mathbf{A}]_{\mathbf{o}}, \mathbf{m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$	$[\mathbf{B}]_{\mathbf{o}}, \mathbf{m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$	Initial Rate, $\mathbf{m o l} \cdot \mathbf{L}^{\mathbf{- 1}} \cdot \mathbf{m i n}^{\mathbf{- 1}}$
0.20	0.10	300
0.40	0.30	3600
0.80	0.30	14400

(A) Rate $=k[\mathrm{~A}][\mathrm{B}]$
(B) Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
(C) Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
(D) Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}$
26. For the irreversible reaction; $\mathrm{A} \rightarrow \mathrm{B}$, which graph gives a straight line for a reaction that is second order in A ?
(A) [A] vs. time
(B) $1 /[\mathrm{A}]$ vs. time
(C) $[\mathrm{A}]^{2}$ vs. time
(D) $1 /[\mathrm{A}]^{2}$ vs. time
27. A sample of a radioactive element that contains 1.0×10^{3} nuclei decays to 6.2×10^{1} nuclei in 10 . minutes. What is its specific decay constant?
(A) $6.2 \mathrm{~min}^{-1}$
(B) $1.2 \mathrm{~min}^{-1}$
(C) $0.28 \mathrm{~min}^{-1}$
(D) $0.062 \mathrm{~min}^{-1}$
28. The oxidation of SO_{2} to $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acid rain is thought to occur by the following mechanism.
$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$2 \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Which species in this mechanism can be given the following designations?
reactant
(A) $\mathrm{SO}_{2}(\mathrm{aq})$
(B) $\mathrm{SO}_{2}(\mathrm{aq})$
(C) $\mathrm{SO}_{2}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})$
(D) $\mathrm{SO}_{2}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ none
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{HSO}_{3}^{-}(\mathrm{aq}), \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$\mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})$
$\mathrm{HSO}_{3}^{-}(\mathrm{aq})$
29. For the reaction; $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$, the rate law is Rate $=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$.
Which of the mechanisms given is consistent with this rate law?

I.		\quad II.		
$\mathrm{I}_{2} \rightleftharpoons \mathrm{I}+\mathrm{I}$		(fast)	$\mathrm{I}_{2} \rightleftharpoons \mathrm{I}+\mathrm{I}$	(slow)
$\mathrm{H}_{2}+\mathrm{I}+\mathrm{I} \rightarrow 2 \mathrm{HI}$	(slow)	$\mathrm{H}_{2}+\mathrm{I}+\mathrm{I} \rightarrow 2 \mathrm{HII}$	(fast)	

(A) I only
(B) II only
(C) Either I or II
(D) Neither I nor II
30. The rate of a reaction at $100^{\circ} \mathrm{C}$ is fout
$50^{\circ} \mathrm{C}$. What is its activation energy?
(A) $1152 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
(B) $80.1 \mathrm{~kJ} \cdot \mathrm{~m}$
(C) $54.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
(D) $27.8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
31. The equilibrium system, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, has $K_{\mathrm{p}}=11$. For which equilibrium system is $K_{\mathrm{p}}=0.091$?
(A) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(B) $\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(C) $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$
(D) $1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$
32. A 1.0 L evacuated tank is charged with $\mathrm{HI}(\mathrm{g})$ to a pressure of 1.0 atm at 793 K . Some of the $\mathrm{HI}(\mathrm{g})$ forms $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ according to the equilibrium;

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad K_{\mathrm{p}}=0.016
$$

What is the pressure (in atm) of HI at equilibrium?
(A) 0.11
(B) 0.13
(C) 0.80
(D) 1.6
33. A solution of 0.10 M NaZ has a $\mathrm{pH}=8.90$. What is the K_{a} of HZ?
(A) 1.6×10^{-4}
(B) 1.6×10^{-5}
(C) 6.3×10^{-10}
(D) 6.3×10^{-11}
34. What is the pH of a solution made by adding 0.41 g of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to 100 . mL of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$?

Molar mass, $\mathbf{g} \cdot \mathbf{m o l}^{-1}$	
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	82.0
$\boldsymbol{K}_{\mathbf{a}}$	
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}

(A) 4.44
(B) 4.70
(C) 5.05
(D) 8.95
35. The curve represents the titration of

(A) a diprotic acid.
(B) two monoprotic acids with the same $K_{\mathrm{a}} \mathrm{s}$ but different concentrations.
(C) two monoprotic acids with different $K_{\mathrm{a}} \mathrm{s}$ but the same concentrations.
(D) two monoprotic acids with different $K_{\mathrm{a}} \mathrm{s}$ and different concentrations.
36. Which silver compound is the most soluble in water?
(A) $\mathrm{AgCl} K_{\text {sp }}=1.8 \times 10^{-10}$
(B) $\mathrm{Ag}_{2} \mathrm{CO}_{3} K_{\text {sp }}=8.5 \times 10^{-12}$
(C) $\mathrm{AgBr} K_{\text {sp }}=5.4 \times 10^{-13}$
(D) $\mathrm{Ag}_{3} \mathrm{PO}_{4} K_{\text {sp }}=8.9 \times 10^{-17}$
37. When connected to a Standard Hydrogen Electrode (SHE) electrons flow from an unknown half cell to the SHE. Which statement is correct?
(A) The unknown half cell is the anode.
(B) Oxidation occurs at the SHE.
(C) $\mathrm{E}_{\text {red }}^{\circ}$ for the unknown half cell is positive.
(D) $\mathrm{E}_{\text {cell }}^{\circ}$ is negative.
38. Given these standard

$$
\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq}) \quad E^{\circ}=1.82 \mathrm{~V}
$$

reduction potentials, what is the standard reduction potential for $\mathrm{Co}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$?
(A) 2.10 V
(B) 1.54 V
(C) 1.26 V
(D) 0.42 V
39. The cell
$\mathrm{Al}(\mathrm{s})\left|\mathrm{Al}^{3+}(\mathrm{aq}, 0.001 \mathrm{M})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq}, 0.10 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$ has a standard cell potential, $E^{\circ}=2.00 \mathrm{~V}$. What is the cell potential for this cell at the concentrations given?
(A) 2.07 V
(B) 2.03 V
(C) 1.97 V
(D) 1.94 V
40. Ethanol reacts with dichromate ions in acid solution according to the equation;
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$

$$
\rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What is the coefficient for $\mathrm{H}^{+}(\mathrm{aq})$ when this equation is balanced with the smallest whole number coefficients?
(A) 10
(B) 12
(C) 14
(D) 16
41. Given these standard

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \quad E^{\circ}=0.80 \mathrm{~V}
$$

reduction potentials, what is the free energy change (in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for the reaction

$$
\mathrm{Pb}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) ?
$$

(A) -180
(B) -90
(C) 90
(D) 180
42. Chromium metal can be produced by the electrolysis of molten CrO_{3}. What current in amperes operating for 100 minutes is needed to produce 104 grams of this metal?
(A) 193
(B) 96.5
(C) 64.3
(D) 32.2
43. What is the frequency of light with a 480 nm ?
(A) $1.60 \times 10^{-6} \mathrm{~s}^{-1}$
(B) 6.25×10
(C) $6.25 \times 10^{14} \mathrm{~s}^{-1}$
(D) $1.44 \times 10^{20} \mathrm{~s}$
44. Which set of quantum numbers $\left(n, l, m_{l}\right)$ is forbidden?
(A) $3,2,0$
(B) $3,1,-1$
(C) $2,0,0$
(D) $1,1,0$
45. Which characteristic of an atomic orbital is most closely associated with the magnetic quantum number, $m l$?
(A) size
(B) shape
(C) occupancy
(D) orientation
46. Which element exhibits the successive ionization energies given in the table?

Ionization Energy, $\mathbf{k J} \cdot \mathbf{m o l}^{-\mathbf{1}}$	
$1^{\text {st }}$	738
$2^{\text {nd }}$	1451
$3^{\text {rd }}$	7733
$4^{\text {th }}$	10540
$5^{\text {th }}$	13628

(A) Na
(B) Mg
(C) Al
(D) Si
47. The energies of the $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d orbitals in a multielectron atom increase in that order. To which factor(s) can this order be attributed?
I. the relative penetrations of these orbitals near the nucleus
II. the relative average distance of the electron from the nucleus
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
48. Which element has the highest first ionization energy?
(A) Al
(B) Si
(C) P
(D) S
49. What is the formal charge on the nitrogen atom in HNO_{3} ?

(A) 0
(B) +1
(C) +3
(D) +5
50. Which substance has the greatest lattice energy?
(A) CaO
(B) KCl
(C) MgI_{2}
(D) BaS
51. Given the bond energies, what is the $\Delta H_{\mathrm{f}}{ }^{\circ} \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$ in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$? $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$

Bond Energies, $\mathbf{k J} \cdot \mathbf{m o l}^{\mathbf{- 1}}$	
$\mathrm{N} \equiv \mathrm{N}$	946
$\mathrm{~N}=\mathrm{N}$	418
$\mathrm{~N}-\mathrm{N}$	163
$\mathrm{~N}-\mathrm{H}$	389
$\mathrm{H}-\mathrm{H}$	436

(A) 156
(B) 99
(C) -99
(D) -156
52. Which species has a trigonal planar geometry?
(A) ClF_{3}
(B) NCl_{3}
(C) $\mathrm{CO}_{3}{ }^{2-}$
(D) I_{3}^{-}
53. Which of the molecules listed have an sp^{3} hybridized central atom?
I. PCl_{3}
II. COCl_{2}
III. SF_{4}
(A) I only
(B) I and III only
(C) II and III only
(D) I, II and III
54. How many isomers exist for a square planar platinum compound which has four different groups attached to the platinum atom?
(A) one
(B) two
(C) three
(D) four
55. Molecules of which type(s) do not contain a $\mathrm{C}=\mathrm{O}$ bond?
I. amide
II. amine
III. ether
IV. ester
(A) II only
(B) I and IV only
(C) II and III only
(D) III and IV only
56. What is the relationship between the two molecules depicted? They are

(A) identical.
(B) geometric isomers.
(C) structural isomers.
(D) enantiomers.
57. For which compound is the -OH group the most acidic?
(A)

(B)

(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
58. The most notable difference between unsaturated fat containing the same num atoms is that the saturated fat
(A) melts at a higher temperature.
(B) melts at a lower temperature.
(C) releases much more energy when metabolized.
(D) releases much less energy when metabolized.
59. Which $\mathrm{C}_{6} \mathrm{H}_{10}$ isomer is the least stable?
(A)

(B)

(C)

(D)

60. The structure of cholesterol is shown.

What is the approximate length of this molecule (as indicated by the scale bar)? $\left(1 \AA=1 \times 10^{-10} \mathrm{~m}\right)$
(A) $1.75 \AA$
(B) $17.5 \AA$
(C) $175 \AA$
(D) $1750 \AA$

END OF TEST

Olympiad 2009 National Exam Part 1

KEY

Number	Answer	Number	Answer
1.	D	31.	A
2.	C	32.	C
3.	D	33.	B
4.	B	34.	A
5.	B	35.	D
6.	A	36.	B
7.	D	37.	A
8.	A	38.	D
9.	B	39.	B
10.	C	40.	D
11.	B	41.	A
12.	A	42.	A
13.	D	43.	C
14.	C	44.	D
15.	B	45.	D
16.	C	46.	B
17.	C	47.	A
18.	A	48.	C
19.	A	49.	B
20.	D	50.	A
21.	C	51.	B
22.	C	52.	C
23.	D	53.	A
24.	D	54.	C
25.	C	55.	C
26.	B	56.	B
27.	C	57.	B
28.	D	58.	A
29.	A	59.	A
30.	D	60.	B

