

2008 U.S. NATIONAL CHEMISTRY OLYMPIAD

NATIONAL EXAM - PART 1

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, Chair, State University of New York, Cortland

Sherry Berman-Robinson, Consolidated HS, Orland Park, IL (retired) Paul Groves, South Pasadena HS, Pasadena, CA

William Bond, Snohomish HS, Snohomish, WA

David Hostage, Taft School, Watertown, CT

Peter Demmin, Amherst HS, Amherst, NY (retired)

Adele Mouakad, St. John's School, San Juan, PR

Marian Dewane, Centennial HS, Boise, ID Jane Nagurney, Scranton Preparatory School, Scranton, PA

Valerie Ferguson, *Moore HS*, Moore, OK Ronald Ragsdale, *University of Utah*, Salt Lake City, UT

Kimberly Gardner, US Air Force Academy, Colorado Springs, CO

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron® answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on **Part I**. Testing materials, scratch paper, and the Scantron sheet should be made available to the student *only* during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 23, 2008, after which tests can be returned to students and their teachers for further study.

Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed **Part I**, or after **one hour and thirty minutes** has elapsed, the student must turn in the Scantron sheet, **Part I** of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice	1 hour, 30 minutes
Part II	8 questions	problem-solving, explanations	1 hour, 45 minutes
Part III	2 lab problems	laboratory practical	1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use non-programmable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after April 23, 2008.

Distributed by the ACS DivCHED Examinations Institute, University of Wisconsin - Milwaukee, Milwaukee, WI. All rights reserved. Printed in U.S.A.

ABBREVIATIONS AND SYMBOLS							
ampere	A	Faraday constant	F	molal	m		
atmosphere	atm	formula molar mass	M	molar	M		
atomic mass unit	u	free energy	G	molar mass	M		
atomic molar mass	\boldsymbol{A}	frequency	ν	mole	mol		
Avogadro constant	$N_{ m A}$	gas constant	R	Planck's constant	h		
Celsius temperature	°C	gram	g	pressure	P		
centi- prefix	c	heat capacity	C_p	rate constant	k		
coulomb	С	hour	h	retention factor	$R_{ m f}$		
electromotive force	\boldsymbol{E}	joule	J	second	S		
energy of activation	$E_{ m a}$	kelvin	K	temperature, K	T		
enthalpy	H	kilo- prefix	k	time	t		
entropy	\boldsymbol{S}	liter	L	volt	V		
equilibrium constant	K	milli– prefix	m				

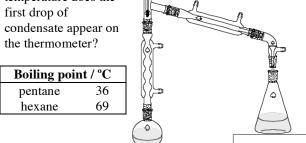
$R = 8.314 \text{ J} \cdot \text{m}$
$R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mo}$
$1 F = 96,500 \text{ C·mol}^{-1}$
$1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$
$N_{\rm A} = 6.022 \times 10^{23} \rm mol^{-1}$
$h = 6.626 \times 10^{-34} \text{J}\cdot\text{s}$
$c = 2.998 \times 10^8 \mathrm{m \cdot s^{-1}}$
$0 ^{\circ}\text{C} = 273.15 \text{K}$
1 atm = 760 mmHg

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad \qquad \ln K = \left(\frac{-\Delta H}{R}\right) \left(\frac{1}{T}\right) + \text{constant}$$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

18

PERIODIC TABLE OF THE ELEMENTS


1A	_																8A
1																	2
H	2											13	14	15	16	17	He
1.008	2A	-										3A	4A	5A	6 A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	\mathbf{Sr}	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub		Uuq		Uuh		Uuo
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)		(2??)]	(2??)		(2??)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

1

DIRECTIONS

- Student Bounty.com When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark ve
- There is only one correct answer to each question. Any questions for which more than one response has been blackened
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question
 - 1. Which substance has the highest melting point?
 - (**A**) Li₂O
- (B) MgO
- (C) CO₂
- (**D**) N_2O_5
- 2. Which reagents produce a gas when combined?
- I. HCl and Na₂SO₃ II. NaOH and Al
- (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- 3. A 1:1 mixture of pentane and hexane is separated by fractional distillation in the apparatus shown. At what temperature does the first drop of

- (A) less than 36 °C
- **(B)** 36 °C
- (C) between 36 °C and 69 °C
- **(D)** more than 69 °C
- **4.** Which nitrogen halide is least stable thermodynamically?
 - (A) NF₃
- (**B**) NCl₃
- (C) NBr_3
- 5. Cyclohexane and water can be separated by using a separatory funnel. Which property contributes to this separation?
 - (A) Cyclohexane and water are immiscible.
 - **(B)** Cyclohexane has a lower viscosity than water.
 - (C) Cyclohexane has a greater molar mass than water.
 - (D) Cyclohexane has a greater vapor pressure than water.

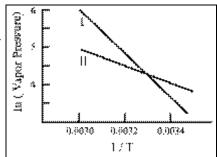
- **6.** A NaOH solution is to be standardized by titrating it against a known mass of potassium hydrogen phthalate. Which procedure will give a molarity of NaOH that is too
 - (A) Deliberately weighing one half the recommended amount of potassium hydrogen phthalate.
 - **(B)** Dissolving the potassium hydrogen phthalate in more water than is recommended.
 - (C) Neglecting to fill the tip of the buret with NaOH solution before titrating.
 - (D) Losing some of the potassium hydrogen phthalate solution from the flask before titrating.
- 7. Which solute is least soluble in water?
 - (A) 1-butanol
- (B) ethanol
- (C) methanol
- (D) 1-propanol
- 8. The mass of a single molecule of an allotrope of sulfur is 3.20×10⁻²² g. How many sulfur atoms are present in a molecule of this allotrope?
 - (A) 4
- **(B)** 6
- **(C)** 8
- **(D)** 12
- 9. 100. L of carbon dioxide measured at 740. mmHg and 50 °C is produced by the complete combustion of a sample of pentane.

$$2C_5H_{12} + 16O_2 \rightarrow 10CO_2 + 12H_2O$$

What mass of pentane reacted?

- (A) 342 g
- **(B)** 265 g
- **(C)** 64.4 g
- **(D)** 53.0 g
- 10. Which 0.10 M aqueous solution has the smallest change in freezing point relative to pure water?
 - (A) $HC_2H_3O_2$
- **(B)** HCl
- (C) CaCl₂
- (D) AlCl₃
- 11. Magnetite, Fe₃O₄, can be reduced to iron by heating

Molar M	[ass / g·mol ^{−1}
Fe_3O_4	232


with carbon monoxide according to the equation:

$$\text{Fe}_3\text{O}_4 + 4\text{CO} \rightarrow 3\text{Fe} + 4\text{CO}_2$$

What mass of Fe₃O₄ is required in order to obtain 5.0 kg of iron if the process is 88% efficient?

- (**A**) 6.1 kg
- **(B)** 6.9 kg
- (C) 7.9 kg
- **(D)** 18 kg

- 12. 40.0 g of a solute is dissolved in 500. mL of a solvent to give a solution with a volume of 515 mL. The solvent has a density of 1.00 g/mL. Which statement about this solution is correct?
 - (A) The molarity is greater than the molality.
 - **(B)** The molarity is lower than the molality.
 - (C) The molarity is the same as the molality.
 - (**D**) The molarity and molality cannot be compared without knowing the solute.
- 13. In the graph, the natural log of the vapor pressures of two substances are plotted versus 1/T. What can be concluded about the relative enthalpies of vaporization

 (ΔH_{vap}) of these substances?

- (A) ΔH_{van} of I is greater than ΔH_{van} of II
- **(B)** ΔH_{vap} of I is less than ΔH_{vap} of II
- (C) ΔH_{vap} of I is is equal to ΔH_{vap} of II
- (D) No conclusion can be drawn from this information
- **14.** For which two gases are the rates of effusion 2:1?
 - (A) H₂ and He
- **(B)** He and O_2
- (C) Ne and Kr
- **(D)** N_2 and Ar
- **15.** Which gas has a density of 0.71 g·L⁻¹ at 0 °C and 1 atm?
 - (**A**) Ar
- **(B)** Ne
- **(C)** CO
- (**D**) CH₄

16. Supercritical carbon dioxide exists at which point on the accompanying phase diagram?

- (A) A
- **(B)** B
- (C) C
- **(D)** D
- 17. Which properties increase with an increase in intermolecular forces at 25 °C?
- I. surface tension II. vapor pressure

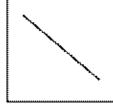
- (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II

- SHILDEN HOUNTS COM 18. The atoms in crystals of silver metal are cubic closest packed structure. What is the this structure?
 - (A) body-centered cubic
- (C) hexagonal-close packed
- 19. Use the information provided to calculate the standard enthalpy of formation of acetylene, C₂H₂(g), in kJ·mol⁻¹.

$$\begin{array}{ccc} C_{2}H_{2}(g) + 5/2O_{2}(g) & & \Delta H^{\circ} = -1299.5 \text{ kJ} \\ C(s) + O_{2}(g) \rightarrow CO_{2}(g) & \Delta H^{\circ} = -393.5 \text{ kJ} \\ H_{2}(g) + 1/2O_{2}(g) \rightarrow H_{2}O(1) & \Delta H^{\circ} = -285.8 \text{ kJ} \end{array}$$

- **(A)** −1978.8
- **(B)** -1121.4
- (C) 226.7
- **(D)** 453.4
- 20. Which statement is always true for a spontaneous reaction?
 - (A) The entropy change for the system is negative.
 - **(B)** The enthalpy change for the system is negative.
 - (C) The entropy change for the universe is positive.
 - **(D)** The free energy change for the system is positive.
- **21.** The heat of a reaction is measured in a bomb calorimeter. This heat is equal to which thermodynamic quantity?
 - (A) ΔE
- **(B)** ΔG
- (**C**) Δ*H*
- (D) ΔS

22. 84.12 g of gold a 120.1 °C is place in 106.4 g of H₂0


	Specific heat	capac	cities / J	·g ⁻¹ .°	C ⁻¹	
ed	Au(s)		0.1	29		
O	$H_2O(1)$		4.1	84		
. •	.1 C' 1.		C (1 '		0	_

- at 21.4 °C. What is the final temperature of this system?
- (A) 70.8
- **(B)** 65.0
- **(C)** 27.8
- **(D)** 23.7
- 23. In order to calculate the lattice energy of NaCl using a Born-Haber cycle, which value is not needed?
 - (A) enthalpy of sublimation of Na(s)
 - (B) first ionization energy of Cl(g)
 - (C) bond dissociation energy of Cl₂(g)
 - (**D**) enthalpy of formation of NaCl(s)
- **24.** Liquid bromine boils at 332.7 Estimate the enthalpy of formation of Br₂(g) in kJ·mol

K.	S°/Jn	nol ⁻¹ •K ⁻¹
	$Br_2(g)$	58.6
-1.	$Br_2(1)$	36.4

- **(A)** 7.40
- **(B)** 12.1
- **(C)** 19.5
- **(D)** 22.2

25. A student analyzed the data from a zero order reaction and obtained the graph shown. What labels should be attached to the X and Y axes, respectively?

- (A) time, concentration
- (B) time, 1 / concentration
- (C) time, ln (concentration)
- **(D)** 1/time, concentration
- **26.** Under certain conditions the reaction of CO with NO₂ to give CO₂ and NO results in the rate law: rate = $k[CO][NO_2]$.

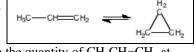
What are the units for the rate constant, k?

- (A) $mol \cdot L^{-1} \cdot min^{-1}$
- **(B)** $L^{\bullet}mol^{-1}^{\bullet}min^{-1}$
- (C) mol²•L⁻²•min⁻¹
- **(D)** $L^2 \cdot mol^{-2} \cdot min^{-1}$
- 27. For the reaction: $X + Y \rightarrow Z$, initial rate data are given in the table.

[X] / M	[Y]/M	Rate / mol·L ⁻¹ ·s ⁻¹
0.10	0.10	0.020
0.10	0.20	0.080
0.30	0.30	0.540

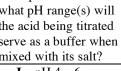
What is the rate law for this reaction?

- (A) Rate = $k[X]^2$
- **(B)** Rate = $k[Y]^2$
- (C) Rate = k[X][Y]
- **(D)** Rate = $k[X][Y]^2$
- 28. The rate of the reaction of chlorine gas with a liquid hydrocarbon can be increased by all of the changes except one. Which change will be ineffective?
 - (A) Use UV light to dissociate the Cl₂.
 - **(B)** Increase temperature at constant pressure.
 - (C) Divide the liquid into small droplets.
 - (**D**) Double the pressure by adding He gas.
- 29. One proposed mechanism of the reaction of HBr with O₂ is given here


is given here.	
$HBr + O_2 \rightarrow HOOBr$	(slow)
HOOBr + HBr → 2HOBr	(fast)
$HOBr + HBr \rightarrow H_2O + Br_2$	(fast)

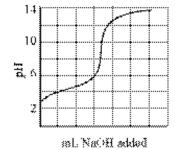
What is the equation for the overall reaction?

- (A) $HBr + O_2 \rightarrow HOOBr$
- **(B)** $2HBr + O_2 \rightarrow Br_2 + H_2O_2$
- (C) $4HBr + O_2 \rightarrow 2H_2O + 2Br_2$
- (D) $2HOBr \rightarrow 2H_2O + Br_2$


- **30.** For the reaction; $A \rightarrow B$, the rate law reaction is 40.0% complete after 50.0 min the value of the rate constant, k?
 - (A) $8.00 \times 10^{-3} \text{ min}^{-1}$
- (C) $1.39 \times 10^{-2} \text{ min}^{-1}$
- Student Bounty.com **31.** When 2.00 mol each of $H_2(g)$ and $I_2(g)$ are reacted in a 1.00 L container at a certain temperature, 3.50 mol of HI is present at equilibrium. Calculate the value of the equilibrium constant, K_c .
 - (A) 3.7
- **(B)** 14
- **(C)** 56
- **(D)** 2.0×10^2
- 32. For which equation is the equilibrium constant equal to K_a for the ammonium ion, NH_4^+ ?
 - (A) $NH_4^+(aq) + OH^-(aq) \rightleftharpoons NH_3(aq) + H_2O(1)$
 - **(B)** $NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$
 - (C) $NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 - (**D**) $NH_3(aq) + H_3O^+(aq) \rightleftharpoons NH_4^+(aq) + H_2O(1)$
- 33. What is the pH of a solution prepared by mixing 45.0 mL of 0.184 M KOH with 65.0 mL of 0.145 M HC1?
 - **(A)** 1.07
- **(B)** 1.13
- **(C)** 1.98
- **(D)** 2.92

34. The gas phase reaction shown is endothermic as written. Which

change(s) will increase the quantity of CH₃CH=CH₂ at equilibrium?


- **I.** increasing the temperature
- II. increasing the pressure
- (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- **35.** The curve represents the titration of a weak monoprotic acid. Over what pH range(s) will the acid being titrated serve as a buffer when mixed with its salt?

- **I.** pH 4-6**II.** pH 7-9
- **III.** pH 12 13
- (B) II only
- (C) I and III only

(A) I only

(D) I, II and III

- **36.** The pH of a saturated solution of $Fe(OH)_2$ is 8.67. What is the K_{sp} for $Fe(OH)_2$?
 - **(A)** 5×10^{-6}
- **(B)** 2×10^{-11}
- (C) 1×10^{-16}
- **(D)** 5×10^{-17}
- **37.** In an operating voltaic cell electrons move through the external circuit and ions move through the electrolyte solution. Which statement describes these movements?
 - (A) Electrons and negative ions both move toward the anode.
 - **(B)** Electrons and negative ions both move toward the cathode.
 - (C) Electrons move toward the anode and negative ions move toward the cathode.
 - (**D**) Electrons move toward the cathode and negative ions move toward the anode.
- 38. The reduction potentials for the +2 cations, e.g. $A^{2+} + 2e^- \rightarrow A^\circ$,
- I. A° reduces B²⁺
- II. B²⁺ oxidizes C^o
- III. Bo oxidizes Do

of four metals decrease in the order A, B, C, D. Which statement(s) is/are true?

- (A) II only
- (B) III only
- (C) I and II only
- (**D**) I and III only

Questions 39 and 40 should be answered with reference to the reaction:

 $2Ag^{+}(aq) + M(s) \rightarrow M^{2+}(aq) + 2Ag$

$$E^{\circ} = 0.940 \text{ V}$$

39. What is the value of E° for the half reaction,

$$\frac{E^{\circ} / V}{Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \quad 0.799}$$

- $M^{2+}(aq) + 2e^{-} \rightarrow M(s)$?
- (A) 0.658 V
- **(B)** 0.141 V
- (C) -0.141 V
- (**D**) -0.658 V
- **40.** Which change will cause the largest increase in the voltage of a cell based on the reaction above?
 - (A) Doubling the [Ag⁺] from 1M to 2M
 - **(B)** Doubling the amount of M(s)
 - (C) Doubling the volume of the 1M Ag⁺ solution
 - **(D)** Reducing the $[M^{2+}]$ from 1M to 0.5M
- **41.** If a voltaic cell has a positive E° value, what can be concluded about the values of ΔG° and K_{eq} ?
 - (A) $\Delta G^{\circ} < 0, K_{eq} < 1$
- **(B)** $\Delta G^{\circ} < 0, K_{eq} > 1$
- (C) $\Delta G^{\circ} > 0, K_{eq} < 1$
- **(D)** $\Delta G^{\circ} > 0, K_{eq} > 1$

- **42.** A 3.00 amp current is used to electrol, chlorides; CaCl₂, MgCl₂, AlCl₃, and FeC deposition of which mass of metal will require longest electrolysis time?
 - (**A**) 100 g Ca
- **(B)** 50 g Mg
- (C) 75 g Al
- **(D)** 125 g Fe
- **43.** Which set of quantum numbers corresponds to an electron in a 4d orbital?
 - (A) $n = 4, \ell = 1, m_{\ell} = -1, m_{s} = 1/2$
 - **(B)** $n = 4, \ell = 2, m_{\ell} = -2, m_{s} = -1/2$
 - (C) $n = 4, \ell = 3, m_{\ell} = 3, m_{s} = 1/2$
 - **(D)** $n = 4, \ell = 3, m_{\ell} = -1, m_{s} = -1/2$
- **44.** What is the energy of a photon from a laser that emits light at 632.8 nm?
 - **(A)** $3.14 \times 10^{-19} \text{ J}$
- **(B)** 1.26×10^{-31} J
- (C) $2.52 \times 10^{-33} \text{ J}$
- **(D)** $4.19 \times 10^{-40} \text{ J}$
- **45.** How many unpaired electrons are in a gaseous Co²⁺ ion in its ground state?
 - **(A)** 1
- **(B)** 3
- **(C)** 5
- **(D)** 7
- **46.** Which ion is **not** isoelectronic with Ar?
 - (A) S^{2-}
- **(B)** K⁺
- (C) Sc^{2+}
- **(D)** Ti⁴⁺
- **47.** Which process releases the most energy?
 - (A) $Mg^{2+}(g) + e^{-} \rightarrow Mg^{+}(g)$
 - (B) $Mg^+(g) + e^- \rightarrow Mg(g)$
 - (C) $Na^{2+}(g) + e^{-} \rightarrow Na^{+}(g)$
 - (D) $Na^+(g) + e^- \rightarrow Na(g)$
- **48.** In which list are the ions arranged in order of increasing size?
 - (A) $F^- < S^{2-} < Al^{3+} < Mg^{2+}$
 - **(B)** $F^- < S^{2-} < Mg^{2+} < Al^{3+}$
 - (C) $Mg^{2+} < F^- < Al^{3+} < S^{2-}$
 - **(D)** $A1^{3+} < Mg^{2+} < F^{-} < S^{2-}$
- **49.** Molecules with non-zero dipole moments include which of those listed?
- I. $H_2C=CHC1$
- II. cis ClHC=CHCl
- III. trans ClHC=CHCl
- (A) I only (B) III only
- (C) I and II only
- (D) I, II and III

- **50.** Which species is diamagnetic?
 - (A) NO
- **(B)** N_2^+
- (C) O₂
- **(D)** O_2^{2-}
- **51.** What is the I-I-I bond angle in the I_3^- ion?
 - (A) 180°
- **(B)** 120°
- (C) 90°
- (**D**) more than 90° but less than 120°
- **52.** Which species has the shortest nitrogen-oxygen bond?
 - (A) NO+
- **(B)** NO_2^+
- (C) NO₂
- (**D**) NO_3^-
- 53. Which substance will form hydrogen bonds to water molecules but will not form hydrogen bonds with its own molecules?
 - (A) HF

- (**B**) C₂H₅OH
- (C) CH₃NH₂
- (D) CH₃OCH₃
- **54.** In the gas phase PCl₅ exists as individual molecules but in the solid it takes on the ionic structure PCl₄+PCl₆. What are the geometries of these three species

PCl₅

PC1,+

PCl₆

octahedral

octahedral

- (A) trigonal see-saw bipyramidal
- (B) trigonal tetrahedral octahedral
- bipyramidal (C) trigonal square planar distorted
- (D) square see-saw square planar pyramidal
- **55.** Which molecule contains exactly eight carbon atoms?
 - (A) benzoic acid
- **(B)** 2,3-dimethylhexane
- (C) 3-ethylpentane

bipyramidal

- (D) 3-methyloctane
- **56.** Which formula represents an alkyne? (Assume all are noncyclic.)
 - (A) C_2H_2
- **(B)** C_2H_4
- (C) C_5H_{10}
- **(D)** C_8H_{18}
- **57.** How many compounds have the formula $C_2H_3Cl_3$?
 - (A) 2
- **(B)** 3
- (C) 4
- **(D)** 5
- **58.** Which is a condensation polymer?
 - (A) polyethylene
- (B) polyvinylchloride
- (C) polystyrene
- (**D**) polyethylene terephthalate
- **59.** What is the number of pi (π) bonds in trans-butenedioic acid $(C_4H_4O_4)$?
 - **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

- Student Bounty.com 60. Cellulose and starch are biological po able to digest starch but not cellulose. The due primarily to a difference in the
 - (A) identity of the monomers in the two polym
 - **(B)** number of monomer units in the two polymer
 - (C) orientation of the bonds joining the monomers.
 - (**D**) percentage of carbon in the two polymers.

END OF TEST

Olympiad 2008 National Part I

KEY

N. I		l l sta	
Number	Answer		swer
1.	В	31.	D
2.	C		В
3.	В		C
4.	D		D
5.	\mathbf{A}		A
6.	C		D
7.	\mathbf{A}		D
8.	В		A
9.	D		C
10.	\mathbf{A}		A
11.	C		В
12.	В		C
13.	${f A}$	43.	В
14.	C	44.	A
15.	D	45.	В
16.	C	46.	C
17.	\mathbf{A}	47.	C
18.	В	48.	D
19.	\mathbf{C}	49.	C
20.	\mathbf{C}	50.	D
21.	\mathbf{A}	51.	A
22.	D	52.	A
23.	В		D
24.	\mathbf{A}		В
25.	\mathbf{A}		В
26.	В		A
27.	D		A
28.	$\overline{\mathbf{D}}$		D
29.	$\overline{\mathbf{C}}$		
30.	В	60.	C C
•	_		-
		'	
		ı	