

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland Chair

Sherry Berman-Robinson, Consolidated High School, IL
Peter E. Demmin (retired), Amherst Central High School, NY
Marian Dewane, Centennial High School, ID
Kimberly Gardner, United States Air Force Academy, CO, Preston Hayes, Glenbrook South High School, IL

David W. Hostage, Taft School, CT
Adele Mouakad, St. John's School, PR
Jane Nagurney, Scranton Preparatory School, PA
Ronald O. Ragsdale, University of Utah, UT
Todd Trout, Lancaster Country Day School, PA

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron ${ }^{\circledR}$ answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on Part I. Testing materials, scratch paper, and the Scantron sheet should be made available to the student only during the examination period. All testing materials including scratch paper should be turned in and kept secure until May 1, 2007, after which tests can be returned to students and their teachers for further study.
Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed Part I, or after one hour and thirty minutes has elapsed, the student must turn in the Scantron sheet, Part I of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice	$\mathbf{1}$ hour, $\mathbf{3 0}$ minutes
Part II	8 questions	problem-solving, explanations	$\mathbf{1}$ hour, 45 minutes
Part III	2 lab problems	laboratory practical	1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use nonprogrammable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after May 1, 2007.
Distributed by the ACS DivCHED Examinations Institute, University of Wisconsin - Milwaukee, Milwaukee, WI.

ABBREVIATIONS AND SYMBOLS					
ampere	A	Faraday constant	F	molal	m
atmosphere	atm	formula molar mass	M	molar	M
atomic mass unit	u	free energy	G	molar mass	M
atomic molar mass	A	frequency	v	mole	mol
Avogadro constant	$N_{\text {A }}$	gas constant	R	Planck's constant	h
Celsius temperature	${ }^{\circ} \mathrm{C}$	gram	g	pressure	P
centi- prefix	c	heat capacity	C_{p}	rate constant	k
coulomb	C	hour	h	retention factor	$R_{\text {f }}$
electromotive force	E	joule	J	second	s
energy of activation	$E_{\text {a }}$	kelvin	K	temperature, K	T
enthalpy	H	kilo- prefix	k	time	t
entropy	S	liter	L	volt	V
equilibrium constant	K	milli- prefix	m		

$R=8.314 \mathrm{~J} \cdot \mathrm{~m}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{mo}$
$1 F=96,500 \mathrm{C} \cdot \mathrm{mol}$
$1 F=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$

$E=E^{\mathrm{o}}-\frac{R T}{n F} \ln Q$	$\ln K=\left(\frac{-\Delta H}{R}\right)\left(\frac{1}{T}\right)+$ constant
$\underline{\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}$	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{140.1}{\mathbf{C e}}$	${ }_{140.9}$	${ }_{144.2}^{\text {Nd }}$	$\underset{(145)}{\text { Pm }}$	$\underset{150.4}{\text { Sm }}$	$\underset{152.0}{\text { Eu }}$	$\underset{157.3}{\text { Gd }}$	$\underset{158.9}{\text { Tb }}$	$\underset{162.5}{\text { Dy }}$	Но 164.9	$\underset{167.3}{\text { Er }}$	$\mathrm{Tm}_{168.9}$	$\underset{173.0}{\mathbf{Y b}}$	$\underset{175.0}{\text { Lu }}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\underset{232.0}{\text { Th }}$	$\underset{231.0}{\text { Pa }}$	$\underset{238.0}{\mathbf{U}}$	$\underset{(237)}{\mathbf{N}}$	$\underset{(244)}{\mathbf{P u}}$	$\underset{(243)}{\mathbf{A m}_{1}}$	$\underset{(247)}{\mathbf{C m}_{1}}$	$\underset{(247)}{\mathbf{B K}}$	$\underset{(251)}{\mathbf{C f}}$	$\underset{(252)}{\mathbf{E S}}$	$\underset{(257)}{\mathbf{F m}_{(2)}}$	$\underset{(258)}{\text { Md }}$	$\begin{gathered} \text { No } \\ (259) \\ \hline \end{gathered}$	$\underset{(262)}{\mathbf{L r}}$

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark vei
- There is only one correct answer to each question. Any questions for which more than one response has been blackened be counted.
Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every questiont

1. Which absorbs gaseous carbon dioxide most effectively?
(A) solid KOH
(B) solid SiO_{2}
(C) aqueous HCl
(D) aqueous NaF
2. Which laboratory results will tell whether an unknown white solid is NaOH or $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
(A) NaOH is soluble in $\mathrm{H}_{2} \mathrm{O}$ but $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is not.
(B) Aqueous NaOH turns litmus blue but $\mathrm{NH}_{4} \mathrm{NO}_{3}$ does not.
(C) Aqueous NaOH reacts with copper metal but $\mathrm{NH}_{4} \mathrm{NO}_{3}$ does not.
(D) NaOH gives a green flame test but $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is colorless in a flame.
3. Which sets of chemicals, when mixed, produce the observation(s) listed?

Combination

I. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
II. $9 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
III. $1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$

Observation

 endothermic exothermic exothermic(A) III only
(B) I and II only
(C) II and III only
(D) I, II and III
4. What happens when 6 M nitric acid is added to an aqueous solution that contains $0.1 \mathrm{M} \mathrm{Cl}^{-}$and 0.1 $\mathrm{M} \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$?
(A) A deposit of silver metal forms.
(B) A precipitate of AgCl forms.
(C) Chlorine gas is released.
(D) Gaseous ammonia is released.
5. A mixture of which 0.2 M aqueous solutions will form a precipitate that dissolves in 6 M nitric acid?
(A) $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{Cl}$
(B) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and NaBr
(C) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$
6. When a liquid is delivered from a volumetric pipet a small amount is typically retained in the tip. How should a student proceed in order to deliver the volume of liquid stated on the pipet?
(A) Leave the small amount in the tip.
(B) Use a pipet bulb to expel the remaining droplet.
(C) Shake the pipet to dispense the amount left in the tip.
(D) Draw the liquid above the line initially to compensate for the amount that remains in the tip.
7. What is the molarity of a 0.500 molal aqueous solution of calcium nitrate that has a density of $1.045 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$?
(A) 0.483 M
(B) 0.500 M
(C) 0.522 M
(D) 0.567 M
8. What volume of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ would be required to completely neutralize a mixture of 20.0 mL of 0.200 M NaOH and 40.0 mL of $0.0500 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$?
(A) 20.0 mL
(B) 26.7 mL
(C) 40.0 mL
(D) 53.3 mL
9. A compound with the formula $\mathrm{X}_{2} \mathrm{O}_{5}$ contains 34.8% oxygen by mass. Identify element X .
(A) arsenic
(B) carbon
(C) phosphorous
(D) samarium
10. A solution of 0.0400 mol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ and 0.0600 mol of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ exerts a vapor pressure of 145.4 mm Hg at a certain temperature. Determine the vapor pressure of pure $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ at this temperature. Assume the vapor pressure of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ at this temperature is 173 mm Hg and that the solution obeys Raoult's Law.
(A) 76.2 mm Hg
(B) 118 mm Hg
(C) 127 mm Hg
(D) 138 mm Hg
11. When 0.1 M aqueous solutions of aluminum nitrate, magnesium nitrate, sodium nitrate and urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, are arranged in order of increasing boiling point, which order is correct?
(A) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=\mathrm{NaNO}_{3}$
(B) $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}<\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}<\mathrm{NaNO}_{3}<\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(C) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}<\mathrm{NaNO}_{3}<\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}<\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(D) $\mathrm{NaNO}_{3}<\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}<\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}<\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
12. What is the maximum mass of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed from

${\text { Molar Mass } / \mathbf{g} \cdot \mathbf{m o l}^{-1}}^{\mid \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}}$	
$\mathrm{Na}_{3} \mathrm{PO}_{4}$	601.84

(A) 0.240 g
(B) 0.480 g
(C) 1.44 g
(D) 7.22 g
13. Which segment of the heating curve obtained at constant pressure corresponds to the transition denoted by the arrow in the phase diagram?

(A) a
(B) b
(C) c
(D) d
14. What is the molar mass of a gas that has a density of $5.66 \mathrm{~g} \cdot \mathrm{~L}^{-1}$ at $35^{\circ} \mathrm{C}$ and 745 mm Hg ?
(A) 127
(B) 141
(C) 143
(D) 146
15. Consider the solids: body-centered cubic (bcc), facecentered cubic (fcc), simple cubic (sc) (or primitive), constructed of spheres of the same size. When they are arranged in increasing order of the percentage of free space in a unit cell, which order is correct?
(A) fcc, bcc, sc
(B) $\mathrm{bcc}, \mathrm{sc}, \mathrm{fcc}$
(C) $\mathrm{sc}, \mathrm{fcc}, \mathrm{bcc}$
(D) bcc, fcc, sc
16. The vapor pressure of phosphorus trio 100 mm Hg at $21.0^{\circ} \mathrm{C}$ and its normal bon $74.2^{\circ} \mathrm{C}$. What is its enthalpy of vaporizatio
(A) 0.493
(B) 3.93
(C) 23.0
17. If the absolute temperature of a sample of gas is increased by a factor of 1.5 , by what ratio does the average molecular speed of its molecules increase?
(A) 1.2
(B) 1.5
(C) 2.2
(D) 3.0
18. The curves in the accompanying diagram represent the PV/RT behavior of the gases: He , CH_{4} and $\mathrm{C}_{3} \mathrm{H}_{8}$. Which assignment of
 behavior to gas is correct?
(A) $1=\mathrm{He}$
(B) $1=\mathrm{C}_{3} \mathrm{H}_{8}$
$2=\mathrm{CH}_{4}$
$2=\mathrm{CH}_{4}$
$3=\mathrm{C}_{3} \mathrm{H}_{8}$
$3=\mathrm{He}$
(C) $1=\mathrm{CH}_{4}$
(D) $1=\mathrm{C}_{3} \mathrm{H}_{8}$
$2=\mathrm{C}_{3} \mathrm{H}_{8}$
$2=\mathrm{He}$
$3=\mathrm{He}$
$3=\mathrm{CH}_{4}$
19. Calculate the standard enthalpy of formation of acetylene (in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$).
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$
$\rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\circ}=-2243.6 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{\circ}=-285.8 \mathrm{~kJ}$
(A) 49.0
(B) 98.0
(C) 1121.8
(D) 1564.3
20. The boiling point of diethyl ether is $34.6^{\circ} \mathrm{C}$. Which is true for the vaporization of diethyl ether at $25.0^{\circ} \mathrm{C}$?
(A) $\Delta G_{\text {vap }}^{\circ}>0$
(B) $\Delta H_{\text {vap }}^{\circ}<0$
(C) $K_{\text {vap }}=1$
(D) $\Delta S^{\circ}{ }_{\text {vap }}<0$
21. Estimate the

Bond Dissociation Enthalpies / kJ•mol			
C-C	350	$\mathrm{C}-\mathrm{O}$	350
$\mathrm{C}-\mathrm{H}$	410	$\mathrm{C}=\mathrm{O}$	732
$\mathrm{O}-\mathrm{H}$	460	$\mathrm{O}-\mathrm{O}$	180
		$\mathrm{O}=\mathrm{O}$	498

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) 668
(B) 540
(C) -540
(D) -668
22. Which reaction has a positive $\Delta S_{\text {reaction }}^{\circ}$?
(A) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s})$
(B) $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(C) $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
(D) $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
23. For reactions
I. constant number of moles conducted at constant pressure, under what
II. constant temperature
III. constant volume conditions are ΔE and ΔH equal?
(A) I only
(B) II only
(C) III only
(D) I and II only
24. For the reaction,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$K_{\mathrm{p}}=50.0$ at 721 K . What is the value of ΔG° for this reaction (per mole of H_{2}) at 721 K ?
(A) -32.3 kJ
(B) -23.5 kJ
(C) -10.2 kJ
(D) -0.231 kJ
25. Which of these factors affect the value of the rate constant for a
I. temperature
II. reactant concentration
III. use of a catalyst reaction?
(A) I only
(B) II only
(C) I and III only
(D) I, II and III
26. Which is the correct exponential form of the Arrhenius equation?
(A) $E_{a}=A e^{-k / R T}$
(B) $\quad E_{a}=A e^{k / R T}$
(C) $k=A e^{-R T / E_{a}}$
(D) $k=A e^{-E_{a} / R T}$
27. For the reaction $\mathrm{A} \rightarrow \mathrm{B}$, what is the order with respect to A that gives this graph?

(A) zero
(B) first
(C) second
(D) third
28. For the reaction $\mathrm{A} \rightarrow \mathrm{B}$ that is first-ot to change from 0.100 M to 0.0450 M ?
(A) 0.0166 s
(B) 16.7 s
(C) 38.4 s
29. These data were obtained for the reaction: $X+Y \rightarrow 2$

$\mathrm{X}(\mathrm{M})$	$\mathrm{Y}(\mathrm{M})$	Rate: $\Delta \mathrm{Z} / \Delta \mathrm{t} / \mathrm{M} \cdot \mathrm{min}^{-1}$
1.00	1.00	2.36×10^{-4}
2.00	2.00	1.89×10^{-3}
2.00	4.00	3.78×10^{-3}

What is the rate law?
(A) Rate $=k[\mathrm{X}][\mathrm{Y}]$
(B) Rate $=k[\mathrm{X}]^{2}[\mathrm{Y}]$
(C) Rate $=k[\mathrm{X}][\mathrm{Y}]^{2}$
(D) Rate $=k[\mathrm{X}]^{2}[\mathrm{Y}]^{2}$
30. A possible mechanism for the conversion of ozone to oxygen in the upper atmosphere is

$$
\begin{array}{ll}
\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) & \text { (fast equilibrium) } \\
\mathrm{O}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{2}(\mathrm{~g}) & \text { (slow) }
\end{array}
$$

Which rate law is consistent with this mechanism?
(A) Rate $=k\left[\mathrm{O}_{3}\right]$
(B) Rate $=k\left[\mathrm{O}_{3}\right]^{2}$
(C) Rate $=k\left[\mathrm{O}_{3}\right][\mathrm{O}]$
(D) Rate $=k\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}$
31. A 0.050 M solution of an unknown acid is 1.0% ionized. What is the value of its K_{a} ?
(A) 2.5×10^{-7}
(B) 5.0×10^{-6}
(C) 5.0×10^{-4}
(D) 5.0×10^{-2}
32. Which mixture(s) form(s) buffer solutions?

I. 100 mL of 0.200 M HF

and 200 mL of 0.200 M NaF
II. 200 mL of 0.200 M HCl
and 200 mL of $0.400 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$
III. 300 mL of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
and 100 mL of $0.300 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$
(A) I only
(B) III only
(C) II and III only
(D) I, II and III
33. Determine the equilibrium constant for the reaction:

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$ given the equilibrium constants for the reactions. $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \quad K_{\mathrm{a}}=6.9 \times 10^{-4}$ $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad K_{\mathrm{b}}=1.8 \times 10^{-5}$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad K_{\mathrm{w}}=1.0 \times 10^{-14}$

(A) 1.2×10^{-8}
(B) 1.2×10^{6}
(C) 8.1×10^{7}
(D) 3.8×10^{15}
34. Calculate the pH of a 0.15 M solution of HOCl .

$\boldsymbol{K}_{\mathrm{a}}$	
HOCl	2.9×10^{-8}

(A) 3.77
(B) 4.18
(C) 6.71
(D) 8.36
35. For which reaction does $K_{\mathrm{p}}=K_{\mathrm{c}}$?
(A) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
(B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(C) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
36. CaF_{2} has a $K_{\text {sp }}=3.9 \times 10^{-11}$ at $25^{\circ} \mathrm{C}$. What is the $\left[\mathrm{F}^{-}\right]$in a saturated solution of CaF_{2} at $25^{\circ} \mathrm{C}$?
(A) 2.1×10^{-4}
(B) 3.4×10^{-4}
(C) 4.3×10^{-4}
(D) 6.8×10^{-4}
37. When the reaction: $\mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced in acid solution what is the ratio of Cl^{-}to ClO_{3}^{-}?
(A) $1 / 1$
(B) $2 / 1$
(C) $3 / 1$
(D) $5 / 1$
38. Which change could occur at the anode of an electrochemical cell?
(A) $\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}$
(B) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}$
(C) $\mathrm{Na}^{+} \rightarrow \mathrm{Na}$
(D) $\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
39. $E^{\circ}=0.93 \mathrm{~V}$ for the reaction:

Standard Reduction Potential / \boldsymbol{E}°	
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.41 V

$\mathrm{Fe}(\mathrm{s})+2 \mathrm{M}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{M}(\mathrm{s})$.
What is the standard potential for $\mathrm{M}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{M}$?
(A) 0.26 V
(B) 0.52 V
(C) 0.67 V
(D) 1.34 V
40. For which half-reaction will a 1.0 unit increase in pH cause the greatest increase in half-cell potential?
(A) $\mathrm{V}^{2+}(\mathrm{aq}) \rightarrow \mathrm{V}^{3+}(\mathrm{aq})+\mathrm{e}^{-}$
(B) $\mathrm{VO}_{3}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{VO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{VO}^{2+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2}^{+}+2 \mathrm{H}^{+}+\mathrm{e}^{-}$
41. A solution of aqueous CuSO_{4} is electrolyzed with a 1.50 ampere current for 30.0 minutes. What mass of copper metal is deposited?
(A) 0.889 g
(B) 1.19 g
(C) 1.78 g
(D) 3.56 g
42. According to the tabulated standard io
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$E^{\circ}=0$.
$E^{\circ}=1.2$
what products are formed during the electrolysis of a aqueous MgBr_{2} solution?
(A) Mg and H_{2}
(B) H_{2} and Br_{2}
(C) H_{2} and O_{2}
(D) Mg and O_{2}
43. Which is the symbol for an element whose ground state atoms have the same total numbers of s electrons and p electrons?
(A) ${ }_{5} \mathrm{~B}$
(B) ${ }_{6} \mathrm{C}$
(C) ${ }_{12} \mathrm{Mg}$
(D) ${ }_{18} \mathrm{Ar}$
44. Which set of quantum numbers is NOT allowed?

	n	ℓ	m_{ℓ}	m_{s}
(A)	1	0	0	-
(B)	2	2	1	-
(C)	3	1	1	-
(D)	4	3	-3	-

45. Which change(s) in electron structure occur when a gas phase Mn atom is converted to a Mn^{2+} ion in the gas phase?
I. The number of occupied energy levels decreases.
II. The number of half-filled orbitals decreases.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
46. Which list gives the symbols of the elements in the order of increasing first ionization energy?
(A) $\mathrm{F}, \mathrm{Ne}, \mathrm{Na}$
(B) $\mathrm{Al}, \mathrm{Mg}, \mathrm{Na}$
(C) $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Mg}$
(D) $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
47. How many unpaired electrons are in a gas phase Co^{2+} ion in its ground state?
(A) 2
(B) 3
(C) 4
(D) 5
48. The energy required to ionize a potassium ion is $419 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. What is the longest wavelength of light that can cause this ionization?
(A) 285 nm
(B) 216 nm
(C) 200 nm
(D) 107 nm
49. Which species has the same electron distribution around the central atom as SiF_{4} ?
(A) SF_{4}
(B) XeF_{4}
(C) ClF_{4}^{+}
(D) BF_{4}^{-}
50. Which is/are polar species?
I. SF_{2}
II. SF_{4}
III. SF_{6}
(A) I only
(B) III only
(C) I and II only
(D) II and III only
51. According to the Lewis dot structure for ozone, what is the formal charge on the central oxygen atom?

(A) -2
(B) -1
(C) 0
(D) +1
52. When the species are arranged in order of increasing length of the carbon-oxygen bond, which order is correct?
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{HCO}_{2} \mathrm{Na}<\mathrm{CH}_{3} \mathrm{ONa}$
(B) $\mathrm{CH}_{3} \mathrm{ONa}<\mathrm{HCO}_{2} \mathrm{Na}<\mathrm{Na}_{2} \mathrm{CO}_{3}$
(C) $\mathrm{HCO}_{2} \mathrm{Na}<\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{CH}_{3} \mathrm{ONa}$
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{CH}_{3} \mathrm{ONa}<\mathrm{HCO}_{2} \mathrm{Na}$
53. Which ionic solid would require the most energy to form gaseous ions?
(A) NaF
(B) $\mathrm{Na}_{2} \mathrm{O}$
(C) MgO
(D) MgF_{2}
54. Solid calcium occurs as either cubic closest packing or hexagonal closest packing. What is the most significant difference between these two structures?
(A) the placement of layers of calcium atoms
(B) the distance betweeen calcium atoms in a single layer
(C) the distance between calcium atoms in adjacent layers
(D) the coordination number of the calcium atoms in a single layer
55. How many unsaturated compounds ha $\mathrm{C}_{4} \mathrm{H}_{8}$?
(A) 3
(B) 4
(C) 5
56. Which compound is least soluble in water?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
57. Which method for characterizing organic compounds relies on the vibration of atoms in the compound?
(A) infrared spectroscopy
(B) nuclear magnetic resonance spectroscopy
(C) UV-visible spectroscopy
(D) X-ray diffraction
58. Which substance reacts most rapidly with water?
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
59. What type of compound is formed by the mild oxidation of 2-pentanol?
(A) acid
(B) aldehyde
(C) ester
(D) ketone
60. Which species is lost during the formation of a disaccharide from a monosaccharide?
(A) CH_{2}
(B) $\mathrm{CH}_{2} \mathrm{O}$
(C) $\mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{H}_{2} \mathrm{O}$

END OF TEST

Number	Answer	Number	Answer
1.	A	31.	B
2.	B	32.	D
3.	D	33.	B
4.	$\stackrel{\text { B }}{ }$	34.	B
5.	C	35.	${ }^{\text {D }}$
6.	A	36.	C
7.	${ }_{\text {B }}^{\text {A }}$	37.	${ }_{\text {D }}$
9.	A	39.	B
10.	C	40.	D
11.	C	41.	A
12.	A	42.	$\stackrel{\text { B }}{ }$
13.	${ }^{\text {B }}$	43.	C
14.	D	44.	B
15.	A	45.	$\stackrel{\text { C }}{\text { C }}$
17.	A	47.	B
18.	B	48.	A
19.	A	49.	${ }_{\text {D }}$
20.	A	50.	C
22.	D	51.	$\stackrel{\mathrm{D}}{\text { C }}$
23.	C	53.	C
24.	${ }^{\text {B }}$	54.	A
25.	C	55.	B
27.	D	56.	${ }_{\text {A }}$
28.	C	58.	B
29.	B	59.	D
30.	D	60.	D

