

2005 U. S. NATIONAL CHEMISTRY OLYMPIAD NATIONAL EXAM PART 1

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland
Chair

Sherry Berman-Robinson, Consolidated High School, IL William Bond, Snohomish High School, WA

Peter E. Demmin (retired), Amherst Central High School, NY

Kimberley Gardner, United States Air Force Academy, CO,

David W. Hostage, Taft School, CT

Alice Johnsen, Bellaire High School, TX Adele Mouakad, St. John's School, PR

Jane Nagurney, Scranton Preparatory School, PA

Ronald O. Ragsdale, University of Utah, UT

Jacqueline Simms, Sandalwood Sr. High School, FL

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron[®] answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on Part I. Testing materials, scratch paper, and the Scantron sheet should be made available to the student only during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 27, 2005, after which tests can be returned to students and their teachers for further study.

Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed **Part I**, or after one hour and thirty minutes has elapsed, the student must turn in the Scantron sheet, **Part I** of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice	1 hour, 30 minutes
Part II	8 questions	problem-solving, explanations	1 hour, 45 minutes
Part III	2 lab problems	laboratory practical	1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use nonprogrammable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete **Part I** (or at the end of one hour and 30 minutes), you *must* turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after April 26, 2005.

Distributed by the ACS DivCHED Examinations Institute, University of Wisconsin - Milwaukee, Milwaukee, WI.

All rights reserved. Printed in U.S.A.

	ABI	BREVIATIONS AND	SYMB	OLS		CONS
ampere atmosphere atomic mass unit atomic molar mass Avogadro constant Celsius temperature centi– prefix coulomb electromotive force energy of activation enthalpy entropy equilibrium constant	A atm u A °C C C E E_a H S K	Faraday constant formula molar mass free energy frequency gas constant gram heat capacity hour joule kelvin kilo– prefix liter milli– prefix	F M G v R g C _p h J K k L m	molal molar molar mass mole Planck's constant pressure rate constant retention factor second temperature, K time volt	$\begin{array}{c} m\\ M\\ M\\ mol\\ h\\ P\\ k\\ R_{\rm f}\\ s\\ T\\ t\\ V \end{array}$	CONS $R = 8.314 \text{ J} \cdot \text{m}$ $R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mo}$ $1 F = 96,500 \text{ C} \cdot \text{mol}^{-1}$ $1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$ $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ $0 ^\circ\text{C} = 273.15 \text{ K}$ 1 atm = 760 mmHg

$E = E^{\circ} - \frac{RT}{nF} \ln Q$	$\ln K = \left(\frac{-\Delta H}{R}\right) \left(\frac{1}{T}\right) + \text{ constant}$	$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$

1 PERIODIC TABLE OF THE ELEMENTS 18										18							
1A																	8A
1 H 1.008	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3	4											5	6	7	8	9	10
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12										Γ	13	14	15	16	17	18
Na 22.99	Mg 24.31	3	4	5	6	7	8	9	10	11	12	Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
22.99	24.31	3B	4B	5B	<u>6B</u>	7B	8B	8B	8B	1B	2B	20.98	28.09	30.97	32.07	33.43	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112		114				
Fr (223)	Ra (226)	Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	(269)	(272)	(277)		(2??)				
												-					
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Ce 140.1	Pr 140.9	Nd 144.2	Pm (145)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Th 232.0	Pa 231.0	U 238.0	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)	Lr (262)		

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark ver
- StudentBounty.com There is only one correct answer to each question. Any questions for which more than one response has been blackened be counted.
 - Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question
 - 1. Which solution produces a black precipitate when added to an aqueous copper(II) solution?

(A) NH_3	(B)	$(NH_4)_2S$
------------	------------	-------------


(C) K_2SO_4	(D)	NaOH
---------------	-----	------

2. Which oxide is the best reducing agent?

(A) CO₂ **(B)** NO₂ (C) SiO_2 **(D)** SO₂

- 3. Solutions of which ion produce a red color when vaporized in a Bunsen burner flame?
 - (A) calcium (B) potassium
 - (C) sodium (D) zinc
- 4. Which procedure for dispensing a liquid with a volumetric pipet is correct?
 - (A) Draw the liquid up to the line on the pipet using a pipet bulb. Squeeze the bulb to force all the liquid in the pipet into the receiving container.
 - (B) Introduce the liquid into the top end of the pipet until it is filled to the line. Allow the liquid to drain into the desired container. Blow on the pipet to release the last drop.
 - (C) Draw the liquid above the line on the pipet using a pipet bulb. With a finger on the top of the pipet allow the curve of the meniscus to drop to the line. Place the tip of the pipet against the side of the receiving container and allow the liquid to drain.
 - (D) Draw the liquid above the line on the pipet by sucking on the open end of the pipet. Place a thumb on the top of the pipet and allow the curve of the meniscus to drop to the line. Allow the liquid to drain into the receiving container pipet against its side.
- 5. Which physical characteristic distinguishes copper from brass (an alloy of copper and zinc)?
 - (A) Brass is a liquid at room temperature and copper is not.
 - (B) Brass is much less dense than copper.
 - (C) Brass is attracted to a magnet but copper is not.
 - (D) Brass is a much poorer electrical conductor than copper.

6. Which diagram best represents the change in electrical conductivity of a solution of acetic acid as a solution of sodium hydroxide is added?

7. Methylamine, CH_3NH_2 , reacts with O_2 to form CO_2 , N_2 , and H_2O . What amount of O_2 (in moles) is required to react completely with 1.00 mol of CH₃NH₂?

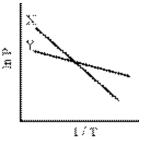
(A) 2.25 (B) 2.50 (C	C) 3.00 (D) 4.50
----------------------	-----------	-----------------

8. Iodine adds to the double bonds in fatty acids (one iodine molecule per double bond). How many double bonds are in a molecule of arachidonic acid (Molar mass = 304.5g/mol) if 0.125 g of the acid require 0.417 g of iodine?

(A) 2 **(B)** 3 **(C)** 4

- 9. The solubility of a gas in a I. pressure of the gas liquid increases when II. temperature of the liquid which of the following increases?
 - (B) II only (A) I only
 - (C) both I and II (D) neither I nor II
- 10. A mineral containing only manganese and oxygen contains 69.6% Mn by mass. What is its empirical formula?
 - (A) MnO (\mathbf{B}) Mn₂O₃
 - (C) Mn_3O_4 (\mathbf{D}) MnO₂

(D) 8


11. Toluene, C_7H_8 , is added to gasoline to increase its octane rating. What is the volume ratio of air to toluene vapor to burn completely to form CO₂ and H₂O? (Assume air is 20% O₂ by volume.)

(A) 9/1 (B) 11/1 (C) 28/1 (D) 45/1

12. Acidified solutions of dichromate ion, $Cr_2O_7^{2-}$, oxidize Fe^{2+} to Fe^{3+} , forming Cr^{3+} in the process. What volume of 0.175 M K₂Cr₂O₇ in mL is required to oxidize 60.0 mL of 0.250 M FeSO₄?

(A) 14.3 (B) 28.6 (C) 42.9 (D) 85.7

- **13.** Which property is the same for 1.0 g samples of H₂ and CH₄ in separate 1.0 L containers at 25 °C?
 - (A) pressure
 - (B) number of molecules
 - (C) average molecular velocity
 - (D) average molecular kinetic energy
- **14.** When CsI, SiO₂, CH₃OH and C₃H₈ are listed in order of increasing melting point, which is the correct order?
 - (A) CsI, SiO₂, CH₃OH, C₃H₈
 - (**B**) CH_3OH , C_3H_8 , CsI, SiO_2
 - (C) CH_3OH , C_3H_8 , SiO_2 , CsI
 - (D) C_3H_8 , CH_3OH , CsI, SiO_2
- 15. According to the graph (ln vapor pressure vs 1/T) what can be concluded about the enthalpies of vaporization (ΔH_{vap}) of liquids X and Y?

- (A) $\Delta H_{vap}X > \Delta H_{vap}Y$
- **(B)** $\Delta H_{vap}X = \Delta H_{vap}Y$
- (C) $\Delta H_{vap}X < \Delta H_{vap}Y$
- (D) No conclusions can be drawn about the relative ΔH_{vap} values from this diagram.
- **16.** An unknown gas effuses through a pin-hole in a container at a rate of 7.2 mmol/s. Under the same conditions gaseous oxygen effuses at a rate of 5.1 mmol/s. What is the molar mass (in g/mol) of the unknown gas?

StudentBounty.com 17. When NaF, MgO, KCl and CaS are In increasing lattice energy, which order (A) MgO, NaF, KCl, CaS (C) KCl, CaS, NaF, MgO **18.** When compared to most other substances of similar III. surface tension molar mass the values of which properties of liquid H₂O are unusually large? (A) I only (B) I and II only (C) II and III only (D) I, II and III **19.** Calculate ΔH° for the reaction; ΔHf° kJ/mol $TiCl_4(g) + 2H_2O(l)$ TiCl₄(g) -763 \rightarrow TiO₂(s) + 4HCl(g) $H_2O(1)$ -286 $TiO_2(s)$ -945 HCl(g) -92 (A) -264 kJ (B) 12 kJ (C) 22 kJ (D) 298 kJ

Bond Energies

kJ/mol

436

386

193

418

941

20. Use bond energies to estimate the value of ΔH° for the reaction; $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ H-H H-N N-N N=N N=N

(A) −995 kJ	(B)	–590 kJ
(C) −67 kJ	(D)	815 kJ

Questions 21. and 22. should be answered using this thermochemical equation;

 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) \quad \Delta H_{rxn} > 0$

- **21.** Which relationship is correct for this reaction at a pressure of 1 atm?
 - (A) $\Delta E_{rxn} > \Delta H_{rxn}$ (B) $\Delta E_{rxn} < \Delta H_{rxn}$ (C) $\Delta E_{rxn} = \Delta H_{rxn} + \Delta S_{rxn}$ (D) $\Delta E_{rxn} = \Delta H_{rxn} - \Delta S_{rxn}$
- **22.** Under what temperature conditions is this reaction spontaneous at standard pressure?
 - (A) at low temperatures only
 - (B) at high temperatures only
 - (C) at all temperatures
 - (D) at no temperature

23. Diethyl ether has a normal boiling point of 35.0 °C and has an entropy of vaporization of 84.4 J/mol·K. What is its enthalpy of vaporization?

(A) 0.274 J/mol	(B) 2.41 J/mol

(C)	3.65 J/mol	(D)	26.0 kJ/mol
--------------	------------	--------------	-------------

24. A 9.40 g sample of KBr is dissolved in 105 g of H₂O at 23.6 °C in a coffee cup. Find the final temperature of this system. Assume that no heat is transferred to the cup or the surroundings. Solution Properties Molar mass KBr 119 g/mol ΔH_{soln} KBr 19.9 kJ/mol C_p solution 4.184 J/g°C

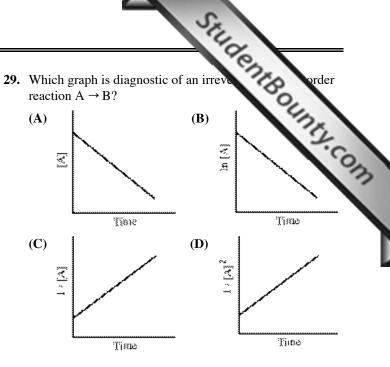
- (C) 26.9 °C (D) 27.2 °C
- 25. For the reaction A → B which is first order in A, which of the following change as the concentration of A changes?

I.	rate
II.	rate constant
III.	Half-life

(A) I only (B) III only

(C) II and III only (D)) I, II and III
-------------------------	-----------------

26. The equation and rate law for the gas phase reaction between NO and H₂ are;
2NO(g) + 2H₂(g) → N₂(g) + 2H₂O(g) Rate = k[NO]²[H₂]
What are the units of k if time is in seconds and the


What are the units of k if time is in seconds and the concentration is in moles per liter?

(C) $mol^{-1} \cdot s^{-1}$ (D) $mol^{2} \cdot L^{-2} \cdot s^{-1}$

27. At a given temperature a first-order reaction has a rate constant of 3.33×10^{-3} s⁻¹. How much time is required for the reaction to be 75% complete?

(A) 100 s	(B) 210 s	(C) 420 s	(D) 630 s
--------------------	------------------	-----------	------------------

- 28. Most reactions occur more rapidly at high temperatures than at low temperatures. This is consistent with an increase in which property at higher temperatures?
 - (A) I only (B) II only
 - (C) I and III only (D) II and III only

- **30.** The reaction; $2NO(g) + 2H_2(g) \rightarrow 2H_2O(g) + N_2(g)$ obeys the rate equation Rate = $k[NO]^2[H_2]$ This mechanism has been proposed:
 - 1. $2NO(g) \rightarrow N_2O_2(g)$
 - 2. $N_2O_2(g) + H_2(g) \rightarrow 2HON(g)$
 - 3. HON(g) + H₂(g) \rightarrow H₂O(g) + HN(g)
 - 4. $HN(g) + HON(g) \rightarrow N_2(g) + H_2O(g)$

Which step of the mechanism is the rate-determining step?

(A)	step 1	(B)	step 2
(C)	step 3	(D)	step 4

- 31. For the hypothetical equilibrium reactions;
 - $A \rightleftharpoons B \qquad K = 2.0$ $B \rightleftharpoons C \qquad K = 0.010$ What is the value of K for the reaction; $2C \rightleftharpoons 2A?$
 - (A) 2500 (B) 50 (C) 25 (D) 4.0×10^{-4}
- **32.** For which
reaction is
 $K_p = K_c$?**I.** $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$
II. $C(s) + O_2(g) \rightleftharpoons CO_2(g)$
III. $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ **(A)** II only**(B)** III only**(C)** I and III only**(D)** II and III only
- **33.** What is the pH of a 0.010 M solution of a weak acid HA that is 4.0% ionized?
 - (A) 0.60 (B) 0.80 (C) 2.80 (D) 3.40

34.	Given the acid ionization	Acid Ionization	Constant, K _a
	constants, when the	HClO	3.5×10 ⁻⁸
	conjugate bases are	HClO ₂	1.2×10 ⁻²
	arranged in order of	HCN	6.2×10 ⁻¹⁰
	increasing base strength,	$H_2PO_4^-$	6.2×10 ⁻⁸
	which order is correct?		

- (A) ClO_2^- , ClO^- , HPO_4^{2-} , CN^-
- (**B**) ClO_2^{-} , $\operatorname{HPO}_4^{2-}$, ClO^{-} , CN^{-}
- (C) CN^{-} , HPO_4^{2-} , ClO^{-} , ClO_2^{-}
- (**D**) CN^{-} , ClO^{-} , HPO_4^{2-} , ClO_2^{-}
- **35.** Calculate the concentration of H_3 1.8×10^{-5} hydrogen ion in mol/L of a 0.010 M solution of NH4Cl.

(A) 4.2×10^{-4}	(B) 2.4×10^{-6}
(C) 1.8×10^{-7}	(D) 5.6×10^{-12}

36. For the reaction;

 $PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$ $K_{sp} = 8.4 \times 10^{-9}$ What is the concentration of Pb^{2+} in mol/L in a saturated solution of PbI_2 in which $[I^{-}] = 0.01$ M?

(A) 8.4×10^{-7}	(B) 8	.4×10 ⁻⁵
(C) 1.3×10^{-3}	(D) 2	.0×10 ⁻³

- **37.** Which statement is correct about the electrochemical cell represented here? Ag | Ag⁺ || NO₃⁻, NO | Pt
 - (A) NO undergoes oxidation at the anode.
 - (B) The major purpose of the Pt is to act as a catalyst.
 - (C) The Ag electrode decreases in mass as the cell operates.
 - (D) The voltage of the cell can be increased by doubling the size of the Ag electrode.
- **38.** The overall reaction for the lead storage battery when it discharges is; Pb(s) + PbO₂(s) + 4H⁺(aq) + 2SO₄²⁻(aq)

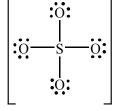
$$\begin{array}{c} D(s) + PbO_2(s) + 4H (aq) + 2SO_4 (aq) \\ & \longrightarrow 2PbSO_4(s) + 2H_2O(l) \\ \hline I. \quad PbSO_4 \text{ is formed only at the cathode.} \\ II. \quad The density of the solution decreases. \end{array}$$

Which statement(s) correctly describe(s) the battery as it discharges?

(A) I only	(B)	II only
------------	------------	---------

(C) both I and II	(D)	neither	l nor II
-------------------	-----	---------	----------

39. The standard reduction potential for $H^+(aq)$ is 0.00 V. What is the reduction potential for a 1×10^{-3} M HCl solution?


(A)	0.355 V	(B)	0.178 V
(C)	–0.178 V	(D)	–0.355 V

			1	40			=
40.	What is the approximate value	Ag+(a	$\frac{1}{1}$ and	$\rightarrow A_{0}$	180	al, V	
	of the equilibrium constant, K_{eq} , at 25 $3Ag^{+}(aq) + Cr(s) \rightarrow$	^o C for th	a <u>q) + 3</u> e react + 3Ag	$e^- \rightarrow Cr(s)$ ion; (s)		72.0	
	(A) 10^{22} (B)	10 ²⁶	(C) 10 ³³	(D)	10'	3
41.	Which products are aqueous solution of I. Al(s) II.					an $O_2(g)$	
I	(A) I and III only	C12(g)		I and IV		J ₂ (g)	1
	(C) II and III only			II and IV	•		
			. ,		2		
42.	A current of 0.20 a solution of nickel(I of Ni metal (in gran	I) nitrate	for 45	.0 minute			
	(A) 0.16 (B)	0.22	(C)	0.33	(D)	0.66	
43.	How many orbitals	are in an	ı atomi	c subleve	l with	1 = 3?	
	(A) 3 (B)	5	(C)	7	(D)	9	
44.	A ground state gase greatest number of				ent ha	s the	
	(A) As (B)	Br	(C)	Ge	(D)	Se	
45.	An atom of which of ionization energy?	element ł	nas the	highest <u>s</u>	econd		
	(A) Na (B)	Mg	(C)	Al	(D)	Κ	
46.	Which of these pro increase across the from Na to Cl?		I. II. III.	atomic r density electron		ity	
	(A) I only		(B)	III only			
	(C) I and II only		(D)	II and II	I only		
47.	For the elements in increases with incre				ch proj	perty	
	(A) melting points	5					
	(B) covalent radiu	S					
	(C) magnitude of	stable ox	idation	state			
	(D) ability to form	chains o	of atom	s with the	emselv	ves	
48.	What mode of radiisotope ${}^{20}_{11}$ Na?	oactive d	ecay is	most like	ely for	the	
	(A) alpha		(B)	beta			
	(C) gamma		(D)	electron	captui	e	
NL	nt valid as a USNC	O Nation	ol Fre	m often	Annil	26 2005	

5

Not valid as a USNCO National Exam after April 26, 2005

- 49. Oxygen gas is paramagnetic. This observation is best explained by
 - (A) resonance.
 - (**B**) the Lewis structure of O_2 .
 - (C) the molecular orbital description of O_2 .
 - (**D**) the hybridization of atomic orbitals in O_2 .
- **50.** What is the geometry of the iodine atoms in the I_3^- ion?
 - (A) bent (B) linear
 - (C) T-shaped (D) triangular
- **51.** Which species has a dipole moment other than zero?
 - (A) BrF_3 (**B**) CF₄ (C) SbF_5 (D) SF_6
- **52.** In the Lewis structure what are the formal charges on the sulfur and oxygen atoms, respectively?

- (A) 0,0 **(B)** −2, 0 **(C)** +2, −1 **(D)** +6, -2
- 53. How many different isomers exist for the octahedral complex $[Co(NH_3)_4Cl_2]^+$?
 - **(B)** 2 **(C)** 3 **(D)** 4 **(A)** 1
- 54. Which order is correct when the species are arranged in order of increasing average N-O bond length?
 - (A) NO_3^-, NO_2^-, NO^+ **(B)** NO^+ , NO_3^- , NO_2^- (C) $NO_2^{-}, NO_3^{-}, NO^{+}$ (**D**) NO^+ , NO_2^- , NO_3^-
- 55. All of the classes of compounds contain at least one oxygen atom EXCEPT
 - (A) esters (B) aldehydes
 - (C) ethers (D) alkynes

- 56. What is the most characteristic reaction
- StudentBounts.com (A) addition
 - (C) reduction
- 57. Which organic acid is the strongest?
 - (A) HCOOH (B) CH₃COOH
 - (C) ClCH₂COOH (D) CICH₂CH₂COOH
- 58. How many structurally isomeric alcohols have the formula C₄H₉OH?
 - (C) three (A) one **(B)** two (D) four
- 59. Which compound can exist as two optical isomers?
 - (A) ClHC = CHCl(**B**) meta- $C_6H_4Cl_2$
 - (C) CH₂ClBr (**D**) $CH_3CH(Cl)CH_2CH_3$
- 60. Which type of dietary fat is currently considered the least harmful?
 - (A) monounsaturated fat (B) polyunsaturated fat
 - (D) trans fat (C) saturated fat

END OF TEST

NATIONAL OLYMPIAD PART I 2005 KEY

StudentBounty.com

		 N T T		
Number	Answer	Number	Answer	
1.	В	31.	Α	
2.	D	32.	Α	
3.	Α	33.	D	
4.	С	34.	В	
5.	D	35.	В	
6.	D	36.	В	
7.	Α	37.	С	
8.	С	38.	В	
9.	Α	39.	С	
10.	В	40.	D	
11.	D	41.	С	
12.	Α	42.	Α	
13.	D	43.	С	
14.	D	44.	Α	
15.	Α	45.	Α	
16.	Α	46.	В	
17.	D	47.	В	
18.	D	48.	D	
19.	С	49.	С	
20.	С	50.	В	
21.	Α	51.	Α	
22.	D	52.	С	
23.	D	53.	В	
24.	В	54.	D	
25.	Α	55.	D	
26.	В	56.	D	
27.	С	57.	С	
28.	D	58.	D	
29.	С	59.	D	
30.	В	60.	В	