

2004 U. S. NATIONAL CHEMISTRY OLYMPIAD

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland Chair

Sherry Berman-Robinson, Consolidated High School, IL William Bond, Snohomish High School, WA Peter E. Demmin (retired), Amherst Central High School, NY Marian Dewane, Centennial High School, ID Dianne Earle, Boiling Springs High School, SC Michael Hampton, University of Central Florida, FL

David W. Hostage, Taft School, CT
Alice Johnsen, Bellaire High School, TX
Adele Mouakad, St. John's School, PR
Ronald O. Ragsdale, University of Utah, UT
Jacqueline Simms, Sandalwood Sr. High School, FL

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron® answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on Part I. Testing materials, scratch paper, and the Scantron sheet should be made available to the student only during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 19, 2004, after which tests can be returned to students and their teachers for further study.
Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed Part I, or after one hour and thirty minutes has elapsed, the student must turn in the Scantron sheet, Part I of the testing materials, and all scratch paper.
There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	$\mathbf{6 0}$ questions	single-answer multiple-choice problem-solving, explanations	$\mathbf{1}$ hour, $\mathbf{3 0}$ minutes
Part II	$\mathbf{8}$ questions	$\mathbf{1}$ hour, $\mathbf{4 5}$ minutes	
Part III	$\mathbf{2}$ lab problems	laboratory practical	$\mathbf{1}$ hour, $\mathbf{3 0}$ minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use nonprogrammable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after April 19, 2004.
Distributed by the ACS DivCHED Examinations Institute, University of Wisconsin - Milwaukee, Milwaukee, WI. All rights reserved. Printed in U.S.A.

ABBREVIATIONS AND SYMBOLS					
ampere	A	Faraday constant	F	molal	m
atmosphere	atm	formula molar mass	M	molar	M
atomic mass unit	u	free energy	G	molar mass	M
atomic molar mass	A	frequency	v	mole	mol
Avogadro constant	$N_{\text {A }}$	gas constant	R	Planck's constant	h
Celsius temperature	${ }^{\circ} \mathrm{C}$	gram	g	pressure	P
centi- prefix	c	heat capacity	C_{p}	rate constant	k
coulomb	C	hour	h	retention factor	$R_{\text {f }}$
electromotive force	E	joule	J	second	S
energy of activation	$E_{\text {a }}$	kelvin	K	temperature, K	T
enthalpy	H	kilo- prefix	k	time	t
entropy	S	liter	L	volt	V
equilibrium constant	K	milli- prefix	m		

$R=8.314 \mathrm{~J} \cdot \mathrm{~m}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{mo}$
$1 F=96,500 \mathrm{C} \cdot \mathrm{mol}$
$1 F=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$

$E=E^{\mathrm{o}}-\frac{R T}{n F} \ln Q$	$\ln K=\left(\frac{-\Delta H}{R}\right)\left(\frac{1}{T}\right)+$ constant
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{140.1}{\text { Ce }}$	${ }_{140.9}^{\text {Pr }}$	${ }_{144.2}^{\text {Nd }}$	$\underset{(145)}{\text { Pm }}$	$\underset{150.4}{\text { Sm }}$	$\underset{152.0}{\text { Eu }}$	$\underset{157.3}{\text { Gd }}$	$\underset{158.9}{\text { Tb }}$	$\underset{162.5}{\text { Dy }}$	Ho 164.9	$\underset{167.3}{\mathbf{E r}}$	Tm	$\underset{173.0}{\mathbf{Y b}}$	$\underset{175.0}{\text { Lu }}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\begin{array}{r} \text { Th } \\ 232.0 \end{array}$	$\underset{231.0}{\text { Pa }}$	$\underset{238.0}{\mathbf{U}}$	$\underset{(237)}{\mathbf{N}} \mathbf{p}$	$\underset{(244)}{\mathbf{P u}}$	$\underset{(243)}{\mathbf{A m}_{1}}$	$\underset{(247)}{\mathbf{C m}}$	$\underset{(247)}{\text { BK }}$	$\underset{(251)}{\mathbf{C f}}$	$\underset{(252)}{\mathbf{E S}}$	$\underset{(257)}{\mathbf{F m}_{1}}$	Md (258)	$\underset{(259)}{\text { No }}$	$\underset{(262)}{\mathbf{L r}}$

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark ve
- There is only one correct answer to each question. Any questions for which more than one response has been blackened be counted.
Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every questiont

1. Which element is obtained commercially from seawater?
(A) bromine
(B) gold
(C) iron
(D) oxygen
2. Which solution can serve as both reactant and indicator when it is used in redox titrations?
(A) $\mathrm{FeNH}_{4}\left(\mathrm{SO}_{4}\right)_{2}$
(B) KMnO_{4}
(C) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(D) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
3. What is formed when a solution of $\mathrm{NH}_{4} \mathrm{NO}_{2}$ is heated gently?
(A) N_{2} and $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$
(C) NO and H_{2}
(D) $\mathrm{N}_{2}, \mathrm{H}_{2}$ and O_{2}
4. Which method should be used to extinguish burning magnesium metal?
(A) Blanket it with CO_{2}
(B) Blow on it.
(C) Dump sand on it.
(D) Pour water on it.
5. Which letter indicates where a thermometer should be placed to determine the boiling point of a distillate?

(A) A
(B) B
(C) C
(D) D
6. A 50 mL sample of gas is collected over water. What will be the effect on the calculated molar mass of the gas if the effect of the water vapor is ignored? It will be
(A) high because of the mass of water in the collection flask.
(B) high because of omitting the vapor pressure of the water in the calculation.
(C) low because of the mass of water in the collection flask.
(D) low because of omitting the vapor pressure of the water in the calculation.
7. A 1.871 gram sample of an unknown metallic carbonate is decomposed by heating to form the metallic oxide and 0.656 g of carbon dioxide according to the equation

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

What is the metal?
(A) Ca
(B) Mn
(C) Ni
(D) Zn
8. What is the coefficient for OH^{-}after the equation ${ }_{-} \mathrm{Br}_{2}+{ }_{-} \mathrm{OH}^{-} \rightarrow \mathrm{Br}^{-}+{ }_{-} \mathrm{BrO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ is balanced with the smallest integer coefficients?
(A) 3
(B) 6
(C) 12
(D) 18
9. An ionic compound contains 29.08% sodium, 40.56% sulfur and 30.36% oxygen by mass. What is the formula of the sulfur-containing anion in the compound?
(A) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
(B) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$
(C) $\mathrm{S}_{2} \mathrm{O}_{5}^{2-}$
(D) $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
10. A solution is prepared containing a $2: 1$ mol ratio of dibromoethane $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\right)$ and dibromopropane $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}\right)$. What is the total

Vapor pressure $(\mathbf{m m H g})$	
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	173
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$	127

(A) 300 mmHg
(B) 158 mmHg
(C) 150 mmHg
(D) 142 mmHg
11. A solution of magnesium chloride that is 5.10% magnesium by mass has a density $1.17 \mathrm{~g} / \mathrm{mL}$. How many moles of Cl^{-}ions are in $300 . \mathrm{mL}$ of the solution?
(A) 0.368
(B) 0.627
(C) 0.737
(D) 1.47
12. Which aqueous solution has a freezing point closest to that of $0.30 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
(A) $0.075 \mathrm{M} \mathrm{AlCl}_{3}$
(B) $0.15 \mathrm{M} \mathrm{CuCl}_{2}$
(C) 0.30 M NaCl
(D) $0.60 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
13. An unknown gas is placed in a sealed container with a fixed volume. Which of the characteristics listed

I The density of the gas
II The average kinetic energy of the molecules
III The mean free path between molecular collisions change(s) when the container is heated from $25^{\circ} \mathrm{C}$ to $250{ }^{\circ} \mathrm{C}$?
(A) I only
(B) II only
(C) III only
(D) I and II only
14. Which gas has the same density at $546{ }^{\circ} \mathrm{C}$ and 1.50 atm as that of O_{2} gas at STP?
(A) N_{2}
(B) NH_{3}
(C) SO_{2}
(D) SO_{3}
15. Which plot involving vapor pressure (VP) and absolute temperature results in a straight line?
(A) VP vs T
(B) VP vs T${ }^{-1}$
(C) \ln VP vs T
(D) $\ln \mathrm{VP}$ vs T${ }^{-1}$
16. For a substance with the values of $\Delta \mathrm{H}_{\text {vap }}$ and $\Delta \mathrm{S}_{\text {vap }}$ given below, what is its normal boiling point in ${ }^{\circ} \mathrm{C}$? $\left(\Delta \mathrm{H}_{\text {vap }}=59.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} ; \Delta \mathrm{S}_{\text {vap }}=93.65 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$
(A) 357
(B) 630
(C) 1314
(D) 1587
17. What is the order of the boiling points (from lowest to highest) for the hydrogen halides?
(A) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
(B) $\mathrm{HI}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HF}$
(C) $\mathrm{HCl}<\mathrm{HF}<\mathrm{HBr}<\mathrm{HI}$
(D) $\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}<\mathrm{HF}$
18. Of the three types of cubic lattices, which have the highest and lowest densities for the same atoms?

Highest

(A) simple cubic
(B) face-centered cubic
(C) body-centered cubic
D) face-centered cubic

Lowest

body-centered cubic
simple cubic
face-centered cubic
body-centered cubic
19. For which reaction is $\Delta \mathrm{H}$ (enthalpy change) most nearly equal to $\Delta \mathrm{E}$ (internal energy change)?
(A) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(B) $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ClF}(\mathrm{g})$
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
20. Which is the best description of the ra the absolute entropies, S°, of solid water 200 K ?
(A) $\mathrm{S}^{\circ}{ }_{200 \mathrm{~K}}$ is smaller because entropy decrease temperature increases.
(B) $\mathrm{S}^{\circ}{ }_{200 K}$ is smaller because the surroundings are mor disordered at higher temperatures.
(C) $\mathrm{S}^{\circ}{ }_{100 \mathrm{~K}}=\mathrm{S}^{\circ}{ }_{200 \mathrm{~K}}=$ because water is in the solid phase at both temperatures.
(D) $\mathrm{S}^{\circ}{ }_{200 \mathrm{~K}}$ is larger because the vibration of the molecules increases as temperature increases.
21. For the reaction,

$$
\begin{aligned}
\mathrm{CH}_{4} & +\mathrm{Cl}_{2} \\
& \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}
\end{aligned}
$$

which expression gives $\Delta \mathrm{H}$?

Bond dissociation energies	$\mathbf{k J} \cdot \mathbf{m o l}^{\mathbf{1}}$
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{C}-\mathrm{Cl}$	328
$\mathrm{Cl}-\mathrm{Cl}$	242
$\mathrm{H}-\mathrm{Cl}$	431

(A) $\Delta \mathrm{H}=(413+328)-(242+431)$
(B) $\Delta \mathrm{H}=(413-328)-(242-431)$
(C) $\Delta \mathrm{H}=(413-242)-(328-431)$
(D) $\Delta \mathrm{H}=(413+242)-(328+431)$
22. Which phase change for water has positive values for both $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$?
(A) (l) \rightarrow (s) at 250 K
(B) (l) \rightarrow (s) at 350 K
(C) $(\mathrm{l}) \rightarrow(\mathrm{g})$ at 350 K
(D) $(\mathrm{l}) \rightarrow(\mathrm{g})$ at 450 K
23. When solid CuSO_{4} dissolves in water to make a 1 M solution, the temperature of the system increases. When solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolves in water to make a 1 M solution, the temperature of the system decreases. Which statement(s) must be correct for these dissolving processes?
I $\Delta \mathrm{H}^{\circ}$ values for both processes have the same sign. II $\Delta \mathrm{G}^{\circ}$ values for both processes have the same sign.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
24. Which set of relationships could apply to the same electrochemical cell?
(A) $\Delta \mathrm{G}^{\circ}>0 ; \mathrm{E}^{\circ}=0$
(B) $\Delta \mathrm{G}^{\circ}<0 ; \mathrm{E}^{\circ}=0$
(C) $\Delta \mathrm{G}^{\circ}>0 ;$ E $^{\circ}>0$
(D) $\Delta \mathrm{G}^{\circ}<0 ; \mathrm{E}^{\circ}>0$
25. The rate constant for a reaction is affected by which factors?

I increase in temperature
 II concentration of the reactants
 III presence of a catalyst

(A) I and II only
(B) I and III only
(C) II and III only
(D) I, II and III
26. The rate data given were obtained for the reaction,
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
What is the rate law for this reaction?

NO pressure (atm)	H_{2} pressure (atm)	Rate $\left(\mathrm{atm} \cdot \mathrm{sec}^{-1}\right)$
0.375	0.500	6.43×10^{-4}
0.375	0.250	3.15×10^{-4}
0.188	0.500	1.56×10^{-4}

(A) Rate $=k \mathrm{P}_{\mathrm{NO}}$
(B) Rate $=k \mathrm{P}_{\mathrm{NO}}^{2}$
(C) Rate $=\mathrm{k} \mathrm{P}_{\mathrm{NO}} \mathrm{P}_{\mathrm{H}_{2}}^{2}$
(D) Rate $=\mathrm{k} \mathrm{P}_{\mathrm{NO}}^{2} \mathrm{P}_{\mathrm{H}_{2}}$
27. What is the order of a reaction that produces the graphs shown?

(A) zero order
(B) first order
(C) second order
(D) some other order
28. What is the rate law for the hypothetical reaction with the mechanism shown?
$2 \mathrm{~A} \rightleftharpoons$ intermediate 1 fast equilibrium intermediate $1+\mathrm{B} \rightarrow$ intermediate 2 slow intermediate $2+\mathrm{B} \rightarrow \mathrm{A}_{2} \mathrm{~B}_{2} \quad$ fast
(A) Rate $=\mathrm{k}[\mathrm{A}]^{2}$
(B) Rate $=[\mathrm{B}]^{2}$
(C) Rate $=k[A][B]$
(D) Rate $=k[A]^{2}[B]$
29. According to the Arrhenius equation: $\mathrm{k}=\mathrm{Ae}^{-\mathrm{E} / \mathrm{RT}}$, a plot of $\ln \mathrm{k}$ against $1 / \mathrm{T}$ yields
(A) E_{a} as the slope and A as the intercept
(B) $\mathrm{E}_{\mathrm{a}} / \mathrm{R}$ as the slope and A as the intercept
(C) $\mathrm{E}_{\mathrm{a}} / \mathrm{R}$ as the slope and $\ln \mathrm{A}$ as the intercept
(D) $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$ as the slope and $\ln \mathrm{A}$ as the intercept
30. Curves with the shape shown are often observed for reactions involving catalysts. The level portion of the curve is best attributed to the fact that

Reactant concentration
(A) product is no longer being formed.
(B) the reaction has reached equilibrium.
(C) all the catalytic sites are occupied.
(D) all the reactant has been consumed.
31. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})$
$\mathrm{HS}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})$
Given the equilibrium constants provided, equilibrium constant for the reaction;
$\mathrm{S}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \quad \mathrm{K}=$?
(A) 9.5×10^{-27}
(B) 9.7×10^{-14}
(C) 9.5×10^{11}
(D) 1.0×10^{26}
32. Calculate the hydronium ion concentration in 50.0 mL of $0.10 \mathrm{M} \mathrm{NaH}_{2} \mathrm{AsO}_{4}$. $\left(\mathrm{K}_{1}=6.0 \times 10^{-3}, \mathrm{~K}_{2}=1.1 \times 10^{-7} \mathrm{~K}_{3}=3.0 \times 10^{-12}\right)$
(A) 2.4×10^{-2}
(B) 1.6×10^{-3}
(C) 1.0×10^{-4}
(D) 2.5×10^{-5}
33. When the acids; $\mathrm{HClO}_{3}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$, are arranged in order of increasing strength, which order is correct?
(A) $\mathrm{H}_{3} \mathrm{BO}_{3}<\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{HClO}_{3}$
(B) $\mathrm{HClO}_{3}<\mathrm{H}_{3} \mathrm{BO}_{3}<\mathrm{H}_{3} \mathrm{PO}_{4}$
(C) $\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{HClO}_{3}<\mathrm{H}_{3} \mathrm{BO}_{3}$
(D) $\mathrm{H}_{3} \mathrm{BO}_{3}<\mathrm{HClO}_{3}<\mathrm{H}_{3} \mathrm{PO}_{4}$
34. A buffer solution results from mixing equal volumes of which solutions?
I $0.10 \mathrm{M} \mathrm{HCl}^{2}$ and $0.20 \mathrm{M} \mathrm{NH}_{3}$
II $0.10 \mathrm{M} \mathrm{HNO}_{2}$ and $0.10 \mathrm{M} \mathrm{NaNO}_{2}$
III 0.20 M HCl and 0.10 M NaCl
(A) II only
(B) I and II only
(C) I and III only
(D) I, II and III
35. A solution is 0.10 M in $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, and Al^{3+} ions. Which compound will precipitate at the lowest $\left[\mathrm{PO}_{4}{ }^{3-}\right]$ when a solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is added?
(A) $\mathrm{Ag}_{3} \mathrm{PO}_{4}\left(\mathrm{~K}_{\text {sp }}=1 \times 10^{-16}\right)$
(B) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{~K}_{\text {sp }}=1 \times 10^{-33}\right)$
(C) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{~K}_{\text {sp }}=1 \times 10^{-24}\right)$
(D) $\mathrm{AlPO}_{4}\left(\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-20}\right)$
36. Which salt is significantly more soluble in a strong acid than in water?
(A) PbF_{2}
(B) PbCl_{2}
(C) PbBr_{2}
(D) PbI_{2}
37. What is the standard cell potential for the reaction,
$2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow 3 \mathrm{Sn}(\mathrm{s})+2 \mathrm{Cr}^{3+}(\mathrm{aq})$ given the E° values shown?

$$
\begin{array}{ll}
\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{~s}) & -0.744 \mathrm{~V} \\
\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{~s}) & -0.141 \mathrm{~V}
\end{array}
$$

(A) 0.945 V
(B) 0.603 V
(C) -0.603 V
(D) -0.945 V
38. How many electrons are needed in the balanced halfreaction for the oxidation of ethanol to acetic acid?
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$
(A) 1
(B) 2
(C) 3
(D) 4
39. Which is the weakest oxidizing agent in a 1 M aqueous solution?
(A) $\mathrm{Ag}^{+}(\mathrm{aq})$
(B) $\mathrm{Cu}^{2+}(\mathrm{aq})$
(C) $\mathrm{H}^{+}(\mathrm{aq})$
(D) $\mathrm{Zn}^{2+}(\mathrm{aq})$
40. The standard potential for the reaction $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Br}^{-}(\mathrm{aq})--->\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
is 0.283 volts. What is the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$?
(A) 1.6×10^{-5}
(B) 22
(C) 6.1×10^{4}
(D) 3.8×10^{9}
41. When an aqueous solution of potassium fluoride is electrolyzed, which of the following occurs?
(A) O_{2} and H^{+}are produced at one electrode and H_{2} and OH^{-}are formed at the other.
(B) O_{2} and OH^{-}are produced at one electrode and H_{2} and H^{+}are formed at the other.
(C) Metallic K is formed at one electrode and O_{2} and H^{+} are formed at the other.
(D) Metallic K is produced at one electrode and elemental F_{2} is produced at the other.
42. $\mathrm{A} \mathrm{CuSO}_{4}$ solution is electrolyzed for 20 . minutes with a current of 2.0 ampere. What is the maximum mass of copper that could be deposited?
(A) 0.20 g
(B) 0.40 g
(C) 0.79 g
(D) 1.6 g
43. Which experimental evidence most clearly supports the suggestion that electrons have wave properties?
(A) diffraction
(B) emission spectra
(C) photoelectric effect
(D) deflection of cathode rays by a magnet
44. Which quantum number determines the number of angular nodes in an atomic orbital?
(A) n
(B) 1
(C) m_{1}
(D) m_{s}
45. Which element exhibits the greatest number of oxidation states in its compounds?
(A) Ca
(B) V
(C) Cu
(D) As
46. Of the elements given, which has the energy?
(A) N
(B) P
(C) S
47. How many unpaired electrons are in a gaseous Fe its ground state?
(A) 0
(B) 2
(C) 4
(D) 6
48. Which species is most likely to lose a positron $\left(\beta^{+}\right)$?
(A) ${ }_{7}^{12} \mathrm{~N}$
(B) ${ }_{8}^{18} \mathrm{O}$
(C) ${ }_{9}^{20} \mathrm{~F}$
(D) ${ }_{10}^{20} \mathrm{Ne}$
49. According to the Lewis dot structure shown, what are the
 formal charges of the O, C and N atoms, respectively, in the cyanate ion?
(A) $0,0,0$
(B) $-1,0,0$
(C) $-1,+1,-1$
(D) $+1,0,-2$
50. The hybridization of As in AsF_{5} is best described as
(A) sp^{3}
(B) sp^{4}
(C) dsp^{3}
(D) $\mathrm{d}^{2} \mathrm{sp}^{3}$
51. In which species do the atoms NOT lie in a single plane?
(A) BF_{3}
(B) PF_{3}
(C) ClF_{3}
(D) XeF_{4}
52. For which compound does the reaction,

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$ occur most readily?

(A) BeCO_{3}
(B) MgCO_{3}
(C) CaCO_{3}
(D) BaCO_{3}
53. The color of $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ is best attributed to electronic transitions
(A) between different n levels in the metal.
(B) between the metal's d orbitals.
(C) from the Co^{2+} ion to water molecules.
(D) during ionization.
54. When the carbon-oxygen bonds in the species; $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{2} \mathrm{O}$ and CHO_{2}^{-}are arranged in order of increasing length, which is the correct order?
(A) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{2} \mathrm{O}<\mathrm{CHO}_{2}^{-}$
(B) $\mathrm{CH}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CHO}_{2}^{-}$
(C) $\mathrm{CHO}_{2}^{-}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{2} \mathrm{O}$
(D) $\mathrm{CH}_{2} \mathrm{O}<\mathrm{CHO}_{2}^{-}<\mathrm{CH}_{3} \mathrm{OH}$
55. How many different trichlorobenzenes, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$, can be formed?
(A) 1
(B) 2
(C) 3
(D) 4
56. What organic product is formed from the mild oxidation of a secondary alcohol?
(A) acid
(B) aldehyde
(C) ether
(D) ketone
57. The compound with the formula, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$, is best classified as a(n)
(A) amide
(B) amino acid
(C) fatty acid
(D) nucleic acid
58. The reaction between which pair of reactants occurs the fastest for $\left[\mathrm{OH}^{-}\right]=0.010 \mathrm{M}$?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}^{-}$
(B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OH}^{-}$
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-}$
59. What is the major organic product formed from the reaction of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ and HCl ?
(A) $\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(C) $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{Cl}$
(D) $\mathrm{CH}_{2} \mathrm{ClCH}=\mathrm{CH}_{2}$
60. Fats and oils are formed from the combination of fatty acids with what other compound?
(A) cholesterol
(B) glucose
(C) glycerol
(D) phenol

END OF TEST

Number	Answer	Number	Answer
1.	A	31.	D
2.	B	32.	D
3.	A	33.	A
4.	C	34.	B
5.	A	35.	D
6.	D	36.	A
7.	D	37.	B
8.	B	38.	D
9.	A	39.	D
10.	B	40.	D
11.	D	41.	A
12.	A	42.	C
13.	B	43.	A
14.	C	44.	B
15.	D	45.	B
16.	A	46.	C
17.	D	47.	C
18.	B	48.	A
19.	B	49.	D
20.	D	50.	C
21.	D	51.	B
22.	C	52.	A
23.	B	53.	B
24.	D	54.	D
25.	B	55.	C
26.	D	56.	D
27.	C	57.	B
	D		
29.	D	59.	A
30.	C	60.	C

