

1999 U. S. NATIONAL CHEMISTRY OLYMPIAD NATIONAL EXAM—PART I

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland Chair
James S. Bock, Gateway High School, PA
Edward DeVillafranca (retired), Kent School, CT
Peter E. Demmin (retired), Amherst Central High School, NY
John Krikau, American Chemical Society, DC
Patricia A. Metz, University of Georgia, GA
Ronald O. Ragsdale, University of Utah, UT
Helen M. Stone (retired), Ben L. Smith High School, NC
Diane D. Wolff, Ferrum College, VA

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron \circledR answer sheet on which the student records his or her responses. Only this Scantron® sheet is graded for a score on Part I. Testing materials, scratch paper, and the Scantron sheet should be made available to the student only during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 26, 1999, after which tests can be returned to students and their teachers for further study.
Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed Part I, or after one hour and thirty minutes has elapsed, the student must turn in the Scantron sheet, Part I of the testing materials, and all scratch paper.
There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice Part II	$\mathbf{8}$ questions

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use nonprogrammable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write you name on the answer sheet; an ID number is already entered for you. Make a record of this ID number as you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement which is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet having the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

ABBREVIATIONS AND SYMBOLS				
amount of substance	n	equilibrium constant K	milli- prefix	m
ampere	A	Faraday constant $\quad F$	molal	m
atmosphere	atm	formula molar mass $\quad M$	molar	M
atomic mass unit	u	free energy G	mole	mol
atomic molar mass	A	frequency V	Planck's constant	h
Avogadro constant	$N_{\text {A }}$	gas constant $\quad R$	pressure	P
Celsius temperature	${ }^{\circ} \mathrm{C}$	gram $\quad \mathrm{g}$	rate constant	k
centi- prefix	c	hour h	second	s
coulomb	C	joule J	speed of light	c
electromotive force	E	kelvin K	temperature, K	T
energy of activation	$E_{\text {a }}$	kilo- prefix k	time	t
enthalpy	H	liter L	volt	V
entropy	S	measure of pressure mmHg	volume	V

$$
\begin{array}{||c|}
R=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K} \\
R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~h} \\
1 F=96,500 \mathrm{C} \cdot \mathrm{~mol}^{-1} \\
1 F=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1} \\
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{array}
$$

PERIODIC TABLE OF THE ELEMENTS

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{140.1}{\mathbf{C e}}$	$\underset{140.9}{\mathbf{P r}}$	$\underset{144.2}{\mathbf{N d}}$	$\underset{(145)}{\mathbf{P m}_{1}}$	$\underset{150.4}{\mathbf{S m}_{1}}$	$\underset{152.0}{\mathbf{E u}}$	$\underset{157.3}{\mathbf{G d}}$	$\underset{158.9}{\mathbf{T b}}$	$\underset{162.5}{\text { Dy }}$	$\underset{164.9}{\mathbf{H o}}$	$\underset{167.3}{\text { Er }}$	$\operatorname{Tm}_{168.9}$	$\underset{173.0}{\mathbf{Y b}}$	$\underset{175.0}{\mathbf{L u}}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\underset{232.0}{\mathbf{T h}}$	$\underset{\text { P31.0 }}{\mathbf{P a}}$	$\underset{238.0}{\mathbf{U}}$	$\underset{237.0}{\mathbf{N} \mathbf{p}}$	$\underset{(244)}{\mathbf{P u}}$	$\underset{(243)}{\mathbf{A m}_{1}}$	$\underset{(247)}{\mathbf{C m}}$	$\underset{(247)}{\mathbf{B K}}$	$\underset{(251)}{\mathbf{C f}}$	$\underset{(252)}{\mathbf{E S}}$	$\underset{(257)}{\mathbf{F m}_{1}}$	$\underset{(258)}{\text { Md }}$	$\underset{(259)}{\text { No }}$	$\underset{(260)}{\mathbf{L r}}$

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark ve
- Make no marks on the test booklet. Do all calculations on scratch paper provided by your instructor.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened wit be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.

1. Which substance is most likely to be soluble in a nonpolar solvent?
(A) glucose
(B) graphite
(C) lithium fluoride
(D) sulfur
2. A solution of which substance can best be used as both a titrant and its own indicator in an oxidation-reduction titration?
(A) I_{2}
(B) NaOCl
(C) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(D) KMnO_{4}
3. What value of ΔT should be used for the calorimetry experiment that gives these graphed results?

(A) $10{ }^{\circ} \mathrm{C}$
(B) $12{ }^{\circ} \mathrm{C}$
(C) $15^{\circ} \mathrm{C}$
(D) $19{ }^{\circ} \mathrm{C}$
4.

$$
\mathrm{Fe}^{3+}(a q)+\mathrm{SCN}^{-}(a q) \rightleftharpoons \mathrm{FeSCN}^{2+}(a q)
$$

The equilibrium constant for this reaction can best be determined by means of
(A) chromatography.
(B) conductance.
(C) ion exchange.
(D) spectrophotometry.
5. Which solid reacts with dilute hydrochloric acid at $25^{\circ} \mathrm{C}$ to produce a gas that is more dense than air?
(A) Zn
(B) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(C) NaBr
(D) NaHCO_{3}
6. A 20.00 mL sample of a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is titrated with 0.245 M HCl . If 27.15 mL of HCl is required, what is the molarity of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution?
(A) 0.166 M
(B) 0.180 M
(C) 0.333 M
(D) 0.666 M
7. When ionic hydrides react with water, the products are
(A) acidic solutions and hydrogen gas.
(B) acidic solutions and oxygen gas.
(C) basic solutions and hydrogen gas.
(D) basic solutions and oxygen gas.
8. 0.250 g of an element, \mathbf{M}, reacts with excess fluorine to produce 0.547 g of the hexafluoride, MF_{6}. What is the element?
(A) Cr
(B) Mo
(C) S
(D) Te
9. How many moles of Na^{+}ions are in 20 mL of 0.40 M $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
(A) 0.0080
(B) 0.024
(C) 0.050
(D) 0.20
10. What is the mass percent of oxygen in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$?

Molar Mass, M
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O} 666.43 \mathrm{~g} \cdot \mathrm{~mol}$

(A) 9.60
(B) 28.8
(C) 43.2
(D) 72.0
11. What is the coefficient for $\mathrm{H}^{+}(a q)$ when the equation is balanced with whole number coefficients?

$$
\ldots \mathrm{Mn}^{2+}(a q)+\ldots \mathrm{BiO}_{3}^{-}(a q)+\ldots \mathrm{H}^{+}(a q) \rightarrow
$$

$$
-\mathrm{Bi}^{3+}(a q)+\ldots \mathrm{MnO}_{4}^{-}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(l)
$$

(A) 3
(B) 4
(C) 7
(D) 14
12. What is the number of O_{2} molecules in the 2.5 g of O_{2} inhaled by the average person in one minute?
(A) 1.9×10^{22}
(B) 3.8×10^{22}
(C) 4.7×10^{22}
(D) 9.4×10^{22}
13. Which point in the phase diagram best represents supercritical conditions?

(A) A
(B) B
(C) C
(D) D
14. The vapor pressure of a liquid in a closed container depends on

1. temperature of the liquid
2. quantity of liquid
3. surface area of the liquid
(A) 1 only
(B) 2 only
(C) $\mathbf{1}$ and $\mathbf{3}$ only
(D) 1, $\mathbf{2}$ and $\mathbf{3}$
4. What is the maximum number of phases that can be in equilibrium in a one component system?
(A) 1
(B) 2
(C) 3
(D) 4
5. The molar mass of a gas with a density of $5.8 \mathrm{~g} \cdot \mathrm{~L}^{-1}$ at $25^{\circ} \mathrm{C}$ and 740 mm Hg is closest to
(A) $10 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(B) $20 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(C) $150 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(D) $190 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
6. Which substance would be expected to exhibit the greatest surface tension at $25^{\circ} \mathrm{C}$?
(A) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
(D) $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
7. $3 \mathrm{~N}_{2} \mathrm{O}(g)+2 \mathrm{NH}_{3}(g) \rightarrow 4 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H=-879.6 \mathrm{~kJ}$ What is $\Delta H_{\mathrm{f}}^{\circ}$ for $\mathrm{N}_{2} \mathrm{O}$ in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$?

Heats of Formation	
NH_{3}	$-45.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}$	$-241.8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

(A) +246
(B) +82
(C) -82
(D) -246
19. What is the change in internal energy, that gives off 65 joules of heat and does work?
(A) -103 J
(B) -27 J
(C) +27 J
20. What are the signs of ΔH and ΔS for this reaction?

	$2 \mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{(g)}$	
	ΔH	ΔS
(A)	-	-
(B)	-	+
(C)	+	+
(D)	+	-

21. The rate of formation of $\mathrm{O}_{3}(\mathrm{~g})$ is $2.0 \times 10^{-7} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$ for the reaction

$$
3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}_{3}(g)
$$

What is the rate of disappearance of $\mathrm{O}_{2}(\mathrm{~g})$ in $\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$?
(A) 1.3×10^{-7}
(B) 2.0×10^{-7}
(C) 3.0×10^{-7}
(D) 4.5×10^{-7}
22. Which statements are true?

1. S° values for all elements in their standard states are positive.
2. S° values for all aqueous ions are positive.
3. ΔS° values for all spontaneous reactions are positive.
(A) 1 only
(B) $\mathbf{1}$ and 2 only
(C) $\mathbf{2}$ and $\mathbf{3}$ only
(D) 1, 2 and 3
4. $\quad \mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)$

For this reaction, $K=1.7 \times 10^{7}$ at $25^{\circ} \mathrm{C}$. What is the value of ΔG° in kJ ?
(A) -41.2
(B) -17.9
(C) +17.9
(D) +41.2
24. The value of ΔH for a reaction can be found by appropriate combination of bond enthalpies (the energy required to break a particular bond, represented $B E$). Which expression will give ΔH for this reaction?

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)
$$

(A) $B E_{\mathrm{C}=\mathrm{C}}+B E_{\mathrm{H}-\mathrm{H}}-\left[B E_{\mathrm{C}-\mathrm{C}}+2 B E_{\mathrm{C}-\mathrm{H}}\right]$
(B) $B E_{\mathrm{C}-\mathrm{C}}+2 B E_{\mathrm{C}-\mathrm{H}}-\left[B E_{\mathrm{C}=\mathrm{C}}+B E_{\mathrm{H}-\mathrm{H}}\right]$
(C) $1 / 2 B E_{\mathrm{C}=\mathrm{C}}+B E_{\mathrm{H}-\mathrm{H}}-2 B E_{\mathrm{C}-\mathrm{H}}$
(D) $2 B E_{\mathrm{C}-\mathrm{H}}-1 / 2 B E_{\mathrm{C}=\mathrm{C}}+B E_{\mathrm{H}-\mathrm{H}}$
25. What is the sign of ΔG° and the value of K for an electrochemical cell for which $E_{\text {cell }}^{\circ}=0.80 \mathrm{~V}$?

	ΔG°	K
(A)	-	>1
(B)	+	>1
(C)	+	<1
(D)	-	<1

26. The reaction between $\mathrm{NO}(g)$ and $\mathrm{O}_{2}(g)$ to give $\mathrm{NO}_{2}(g)$ is second order in $\mathrm{NO}(g)$ and first order in $\mathrm{O}_{2}(g)$. By what factor will the reaction rate change if the concentrations of both reactants are doubled?
(A) 2
(B) 4
(C) 6
(D) 8
27. The decomposition of ethane into two methyl radicals has a first order rate constant of $5.5 \times 10^{-4} \mathrm{sec}^{-1}$ at $700^{\circ} \mathrm{C}$. What is the half-life for this decomposition in minutes?
(A) 9.1
(B) 15
(C) 21
(D) 30
28. The dependence of the rate constant of a reaction on temperature is given by the equation $k=e^{-E_{a} / k T}$. Under what conditions is k the smallest?
(A) high T and large E_{a}
(B) high T and small E_{a}
(C) low T and large E_{a}
(D) low T and small E_{a}
29. The reaction

$$
\mathrm{CHCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(g)+\mathrm{HCl}_{(g)}
$$

is believed to proceed by this mechanism:

$$
\begin{array}{ll}
\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}_{(g)} & \text { fast } \\
\mathrm{Cl}_{(g)}+\mathrm{CHCl}_{3}(g) \rightarrow \mathrm{HCl}_{(g)}+\mathrm{CCl}_{3}(g) & \text { slow } \\
\mathrm{CCl}_{3}(g)+\mathrm{Cl}_{(g)} \rightarrow \mathrm{CCl}_{4}(g) & \text { fast }
\end{array}
$$

What rate equation is consistent with this mechanism?
(A) Rate $=k\left[\mathrm{Cl}_{2}\right]$
(B) Rate $=k[\mathrm{Cl}]\left[\mathrm{CHCl}_{3}\right]$
(C) Rate $=k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{CHCl}_{3}\right]$
(D) Rate $=k\left[\mathrm{Cl}_{2}\right]^{1 / 2}\left[\mathrm{CHCl}_{3}\right]$
30. The activation energy of a certain reaction is $87 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. What is the ratio of the rate constants for this reaction when the temperature is decreased from $37^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$?
(A) $5 / 1$
(B) $8.3 / 1$
(C) $13 / 1$
(D) $24 / 1$
31.

$$
\mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) \rightleftharpoons 4 \mathrm{PCl}_{3}(s,
$$

Phosphorus reacts with chlorine as shown. equilibrium constant expression, K_{p}, for this rea
(A) $\frac{4 P_{\mathrm{PCl}_{3}}}{6 P_{\mathrm{PCl}_{3}} \cdot P_{\mathrm{Cl}_{2}}}$
(B) $\frac{4 P_{\mathrm{PCl}_{3}}}{6 P_{\mathrm{Cl}_{2}}}$
(C) $\frac{P_{\mathrm{PCl}_{3}}}{P_{\mathrm{P}_{4}} \cdot P_{\mathrm{Cl}_{2}}^{6}}$
(D) $\frac{P_{\mathrm{PCl}_{3}}^{4}}{P_{\mathrm{Cl}_{2}}^{6}}$
32. The equilibrium constant for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

is 6.10×10^{-3} at $25^{\circ} \mathrm{C}$. Calculate the value of K for this reaction:

$$
\mathrm{NO}_{2}(g) \rightleftharpoons 1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g)
$$

(A) 327
(B) 164
(C) 12.8
(D) 3.05×10^{-3}
33. The ion-product constant for water at $45^{\circ} \mathrm{C}$ is 4.0×10^{-14}. What is the pH of pure water at this temperature?
(A) 6.7
(B) 7.0
(C) 7.3
(D) 13.4
34. The position of equilibrium lies to the right in each of these reactions.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{H}_{5}^{+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{N}_{2} \mathrm{H}_{4} \\
& \mathrm{NH}_{3}+\mathrm{HBr} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Br}^{-} \\
& \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{HBr} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{Br}^{-}
\end{aligned}
$$

Based on this information, what is the order of acid strength?
(A) $\mathrm{HBr}>\mathrm{N}_{2} \mathrm{H}_{5}^{+}>\mathrm{NH}_{4}^{+}$
(B) $\mathrm{N}_{2} \mathrm{H}_{5}^{+}>\mathrm{N}_{2} \mathrm{H}_{4}>\mathrm{NH}_{4}^{+}$
(C) $\mathrm{NH}_{3}>\mathrm{N}_{2} \mathrm{H}_{4}>\mathrm{Br}^{-}$
(D) $\mathrm{N}_{2} \mathrm{H}_{5}^{+}>\mathrm{HBr}>\mathrm{NH}_{4}^{+}$
35. HCN is a weak acid $\left(K_{\mathrm{a}}=6.2 \times 10^{-10}\right) . \mathrm{NH}_{3}$ is a weak base ($K_{\mathrm{b}}=1.8 \times 10^{-5}$). A 1.0 M solution of $\mathrm{NH}_{4} \mathrm{CN}$ would be
(A) strongly acidic
(B) weakly acidic
(C) neutral
(D) weakly basic
36. What is the percent ionization of a 0.010 M HCN solution? $\left(K_{\mathrm{a}}=6.2 \times 10^{-10}\right)$
(A) 0.0025%
(B) 0.025%
(C) 0.25%
(D) 2.5%
37. How many moles of HCOONa must be added to 1.0 L of 0.10 M HCOOH to prepare a buffer solution with a pH of 3.4 ? $\left(\mathrm{HCOOH} K_{\mathrm{a}}=2 \times 10^{-4}\right)$
(A) 0.01
(B) 0.05
(C) 0.1
(D) 0.2
38. The acid-base indicator methyl red has a K_{a} of 1×10^{-5}. Its acidic form is red while its alkaline form is yellow. If methyl red is added to a colorless solution with a $\mathrm{pH}=7$, the color will be
(A) pink
(B) red
(C) orange
(D) yellow
39. Silver ions are added to a solution with
$\left[\mathrm{Br}^{-}\right]=\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{AsO}_{4}{ }^{3-}\right]=0.1 \mathrm{M}$.
Which compound will precipitate at the lowest $\left[\mathrm{Ag}^{+}\right]$?
(A) AgBr
$\left(K_{\text {sp }}=5.0 \times 10^{-13}\right)$
(B) AgCl
$\left(K_{\text {sp }}=1.8 \times 10^{-10}\right)$
(C) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
$\left(K_{\mathrm{sp}}=8.1 \times 10^{-12}\right)$
(D) $\mathrm{Ag}_{3} \mathrm{AsO}_{4}$
$\left(K_{\text {sp }}=1.0 \times 10^{-22}\right)$
40. Consider a voltaic cell based on these half-cells.

$$
\begin{array}{ll}
\mathrm{Ag}^{+}(a q)+e^{-} \rightarrow \mathrm{Ag}(s) & E^{\circ}=+0.80 \mathrm{~V} \\
\mathrm{Cd}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Cd}(s) & E^{\circ}=-0.40 \mathrm{~V}
\end{array}
$$

Identify the anode and give the voltage of this cell under standard conditions.
(A) $\mathrm{Ag} ; E_{\text {cell }}=0.40 \mathrm{~V}$
(B) $\mathrm{Ag} ; E_{\text {cell }}=2.00 \mathrm{~V}$
(C) $\mathrm{Cd} ; E_{\text {cell }}=1.20 \mathrm{~V}$
(D) $\mathrm{Cd} ; E_{\text {cell }}=2.00 \mathrm{~V}$
41. Which two species react spontaneously?
(A) $\mathrm{Cu}(s)+\mathrm{Ag}^{+}(a q)$
(B) $\mathrm{Br}_{2}(l)+\mathrm{Cl}^{-}(a q)$
(C) $\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}^{2+}(a q)$
(D) $\mathrm{Au}(s)+\mathrm{Mg}^{2+}(a q)$
42. When aluminum oxide is electrolyzed in the industrial process for the production of aluminum metal, aluminum is produced at one electrode and oxygen gas is produced at the other. For a given quantity of electricity, what is the ratio of moles of aluminum to moles of oxygen gas?
(A) $1: 1$
(B) $2: 1$
(C) $2: 3$
(D) $4: 3$

Questions 43. and 44. should be answered reaction.

$$
2 \mathrm{Cr}(s)+3 \mathrm{Cu}^{2+}(a q) \rightarrow 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{Cu}(s)
$$

43. Which expression gives the value for ΔG° in $\mathrm{kJ} \cdot \mathrm{mo}$ this reaction at $25^{\circ} \mathrm{C}$?
(A) $-6 \times 8.31 \times 0.43 \times 1000$
(B) $\frac{-6 \times 96500 \times 0.43 \times 1000}{8.31}$
(C) $\frac{-6 \times 96500 \times 0.43}{1000}$
(D) $\frac{-6 \times 8.31 \times 0.43}{1000}$
44. What is the voltage for this cell when $\left[\mathrm{Cu}^{2+}\right]=1.0 \mathrm{M}$ and $\left[\mathrm{Cr}^{3+}\right]=0.010 \mathrm{M}$?
(A) 1.2
(B) 0.87
(C) 0.47
(D) 0.39
45. All of these sets of quantum numbers are permissible except
(A)

n	l	m_{l}	m_{s}
1	0	0	$+1 / 2$
2	2	0	$-1 / 2$
3	1	1	$-1 / 2$
3	2	-1	$+1 / 2$

46. Which element can exhibit more than one oxidation state in compounds?
47. Cr
48. Pb
49. Sr
(A) 1 only
(B) 1 and 2 only
(C) $\mathbf{2}$ and $\mathbf{3}$ only
(D) 1,2 and $\mathbf{3}$
50. When the isoelectronic species, $\mathrm{K}^{+}, \mathrm{Ca}^{2+}$, and Cl^{-}, are arranged in order of increasing radius, what is the correct order?
(A) $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$
(B) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}$
(C) $\mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}$
(D) $\mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$
51. Which Group 2 element has chemical properties least like the other members of the group?
(A) Be
(B) Ca
(C) Sr
(D) Ba
52. In the vapor state which atom has the largest ionization energy?
(A) Na
(B) K
(C) Mg
(D) Ca
53. All of these species have the same number of valence electrons as $\mathrm{NO}_{3}{ }^{-}$except
(A) $\mathrm{CO}_{3}{ }^{2-}$
(B) HCO_{3}^{-}
(C) NF_{3}
(D) SO_{3}
54. Which set contains no ionic species?
(A) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{OF}_{2}, \mathrm{H}_{2} \mathrm{~S}$
(B) $\mathrm{CO}_{2}, \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$
(C) $\mathrm{BF}_{3}, \mathrm{AlF}_{3}, \mathrm{TlF}_{3}$
(D) $\mathrm{I}_{2}, \mathrm{CaO}, \mathrm{CH}_{3} \mathrm{Cl}$
55. When these species are arranged in order of increasing bond energy, what is the correct sequence?
(A) $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}$
(B) $\mathrm{F}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
(C) $\mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{~N}_{2}$
(D) $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}$
56. The geometry of the atoms in the species $\mathrm{PCl}_{4}{ }^{+}$is best described as
(A) tetrahedral
(B) see-saw
(C) square
(D) trigonal bipyramidal
57. Which are nonpolar molecules?
58. NCl_{3}
59. SO_{3}
60. PCl_{5}
(A) 1 only
(B) 2 only
(C) $\mathbf{1}$ and $\mathbf{3}$ only
(D) $\mathbf{2}$ and $\mathbf{3}$ only
61. What are the hybridizations of carbon 1 and carbon 2 in the hydrocarbon?

(A) $s p^{3}, s p$
(B) $s p^{3}, s p^{2}$
(C) $s p^{2}, s p^{2}$
(D) $s p, s p^{2}$
62. How many carbon-carbon bonds are 2-methyl-2-butanol?
(A) 2
(B) 3
(C) 4
63. Which molecule can exist as stereoisomers?
(A) $\mathrm{CHF}=\mathrm{CHF}$
(B) $\mathrm{F}_{2} \mathrm{C}=\mathrm{CCl}_{2}$
(C) $\mathrm{CH}_{2} \mathrm{~F}-\mathrm{CHF}_{2}$
(D) $\mathrm{CF}_{3}-\mathrm{CH}_{3}$
64. What are the most likely products in the reaction between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and HI ?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$ and $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and HOI
(C) $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
(D) $\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and H_{2}
65. Addition polymers include
66. polyamide
67. polyethylene
68. polyester
(A) 1 only
(B) 2 only
(C) $\mathbf{2}$ and $\mathbf{3}$ only
(D) 1, 2 and 3
69. All of these are aromatic compounds except
(A) hexene, $\mathrm{C}_{6} \mathrm{H}_{12}$
(B) toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(C) p-dichlorobenzene, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
(D) naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$

US National Chemistry Olympiad - 1999
 National Examination-Part I SCORING KEY

Number	Answer	Number	Answer	Number	Answer
1.	D	21.	C	41.	A
2.	D	22.	A	42.	D
3.	B	23.	A	43.	C
4.	D	24.	A	44.	C
5.	D	25.	A	45.	B
6.	A	26.	D	46.	B
7.	C	27.	C	47.	D
8.	B	28.	C	48.	A
9.	B	29.	D	49.	C
10.	D	30.	C	50.	C
11.	D	31.	D	51.	B
12.	C	32.	C	52.	B
13.	B	33.	A	53.	A
14.	A	34.	A	54.	D
15.	C		D	55.	B
16.	C	36.	B	56.	C
17.	D	37.	B	57.	A
18.	B	38.	D	58.	A
19.	A		A	59.	B
20.	B	40.	C	60.	A

