

2010 U.S. NATIONAL CHEMISTRY OLYMPIAD

LOCAL SECTION EXAM

Student Bounty.com Prepared by the American Chemical Society Chemistry Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, **Chair**, State University of New York, Cortland, NY

James Ayers, Mesa State College, Grand Junction, CO Sherry Berman-Robinson, Consolidated HS, Orlando Park, IL (retired) Seth Brown, University of Notre Dame, Notre Dame, IN Peter Demmin, Amherst HS, Amherst, NY (retired) Marian Dewane, Centennial HS, Boise, ID Xu Duan, *Queen Anne School*, Upper Marlboro, MD Valerie Ferguson, Moore HS, Moore, OK Julie Furstenau, Thomas B. Doherty HS, Colorado Springs, CO Kimberly Gardner, United States Air Force Academy, CO Regis Goode, Ridge View High School, Columbia, SC Paul Groves, South Pasadena HS, South Pasadena, CA Preston Haves, Glenbrook South HS, Glenbrook, IL (retired) David Hostage, Taft School, Watertown, CT Dennis Kliza, Kincaid School, Houston, TX Adele Mouakad, St. John's School, San Juan, PR Jane Nagurney, Scranton Preparatory School, Scranton, PA Ronald Ragsdale, University of Utah, Salt Lake City, UT

DIRECTIONS TO THE EXAMINER

This test is designed to be taken with an answer sheet on which the student records his or her responses. All answers are to be marked on that sheet, not written in the booklet. Each student should be provided with an answer sheet and scratch paper, both of which must be turned in with the test booklet at the end of the examination. Local Sections may use an answer sheet of their own choice.

The full examination consists of 60 multiple-choice questions representing a fairly wide range of difficulty. Students should be permitted to use non-programmable calculators. A periodic table and other useful information are provided on page two of this exam booklet for student reference.

Suggested Time: 60 questions—110 minutes

DIRECTIONS TO THE EXAMINEE

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO.

This is a multiple-choice examination with four choices for each question. There is only one correct or best answer to each question. When you select your choice, blacken the corresponding space on the answer sheet with your pencil. Make a heavy full mark, but no stray marks. If you decide to change your answer, be certain to erase your original answer completely.

> Distributed by American Chemical Society, 1155 16th Street, N.W., Washington, DC 20036 All rights reserved. Printed in U.S.A.

ABBREVIATIONS AND SYMBOLS						
amount of substance	n	Faraday constant	F	molar	M	
ampere	A	free energy	G	molar mass	M	
atmosphere	atm	frequency	ν	mole	mol	
atomic mass unit	u	gas constant	R	Planck's constant	h	
Avogadro constant	$N_{ m A}$	gram	g	pressure	P	
Celsius temperature	°C	hour	ĥ	rate constant	k	
centi- prefix	c	joule	J	reaction quotient	Q	
coulomb	C	kelvin	K	second	S	
density	d	kilo- prefix	k	speed of light	c	
electromotive force	E	liter	L	temperature, K	T	
energy of activation	E_{a}	measure of pressure	mmHg	time	t	
enthalpy	H	milli– prefix	m	volt	V	
entropy	S	molal	m	volume	V	
equilibrium constant	K					

$R = 8.314 \text{ J} \cdot \text{me}$
$R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mo}$
$1 F = 96,500 \text{ C·mol}^{-}$
$1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$
$N_{\rm A} = 6.022 \times 10^{23} \text{mol}^{-1}$
$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
$c = 2.998 \times 10^8 \mathrm{m\cdot s^{-1}}$
$0 ^{\circ}\text{C} = 273.15 \text{K}$

1			P	ERI	OD	IC T	ГАВ	LE	OF	TH	E E	LEN	1EN	TS			18
1A																	8A
1																	2
H	2											13	14	15	16	17	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(277)	(268)	(281)	(272)	(277)	(Uut)	(Uuq)	(Uup)	(Uuh)	(Uus)	(Uuo)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

DIRECTIONS

When you have selected your answer to each question, blacken the corresponding space on the answer sheet using a s Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark completely.

Student Bounty Com There is only one correct answer to each question. Any questions for which more than one response has been blackened will counted.

Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.

- 1. A student is asked to measure 30.0 g of methanol $(d = 0.7914 \text{ g/mL at } 25^{\circ}\text{C})$ but has only a graduated cylinder with which to measure it. What volume of methanol should the student use to obtain the required 30.0 g?
 - (**A**) 23.7 mL
- **(B)** 30.0 mL
- (**C**) 32.4 mL
- **(D)** 37.9 mL
- 2. A flame test was performed to confirm the identity of a metal ion in solution. The result was a green flame. Which of the following metal ions is indicated?
 - (A) copper
- (B) sodium
- (C) strontium
- (D) zinc
- 3. When phenolphthalein is added to an aqueous solution containing one of the following solutes the solution turns pink. Which solute is present?
 - (A) NaCl
- (**B**) KC₂H₃O₂

(C) LiBr

- (**D**) NH_4NO_3
- 4. Solid camphor is insoluble in water but is soluble in vegetable oil. The best explanation for this behavior is that camphor is a(n)
 - (A) ionic solid
- (B) metallic solid
- (C) molecular solid
- (**D**) network solid
- 5. A student performed an experiment to determine the ratio of H₂O to CuSO₄ in a sample of hydrated copper(II) sulfate by heating it to drive off the water and weighing the solid before and after heating. The formula obtained experimentally was CuSO₄ •5.5H₂O but the accepted formula is CuSO₄ •5H₂O. Which error best accounts for the difference in results?
 - (A) During heating some of the hydrated copper(II) sulfate was lost.
 - **(B)** The hydrated sample was not heated long enough to drive off all the water.
 - (C) The student weighed out too much sample initially.
 - (**D**) The student used a balance that gave weights that were consistently too high by 0.10 g.

- **6.** An aqueous solution is known to contain Ag^+ , Mg^{2+} , and Sr²⁺ ions. Which reagent should be used to selectively precipitate the Ag⁺?
 - (A) 0.20 M NaCl
- **(B)** 0.20 M NaOH
- (C) $0.20 \text{ M Na}_2\text{SO}_4$
- **(D)** $0.20 \text{ M Na}_{3}PO_{4}$
- 7. What is the coefficient for O_2 when the following reaction $As_2S_3 + O_2 \rightarrow As_2O_3 + SO_2$

is correctly balanced with the smallest integer coefficients?

- **(A)** 5
- **(B)** 6
- **(C)** 8
- **(D)** 9
- 8. Which compound contains the highest percentage of nitrogen by mass?
 - **(A)** NH₂OH (M = 33.0)
- **(B)** NH_4NO_2 (M = 64.1)
- (C) N_2O_3 (M = 76.0)
- **(D)** $NH_4NH_2CO_2$ (M = 78.1)
- **9.** How many neutrons are in 0.025 mol of the isotope ${}_{24}^{54}$ Cr?
 - (A) 1.5×10^{22}
- **(B)** 3.6×10^{23}
- (C) 4.5×10^{23}
- **(D)** 8.1×10^{23}
- 10. Magnesium chloride dissolves in water to form
 - (A) hydrated MgCl₂ molecules
 - **(B)** hydrated Mg²⁺ ions and hydrated Cl⁻ ions
 - (C) hydrated Mg²⁺ ions and hydrated Cl₂²⁻ ions
 - (**D**) hydrated Mg atoms and hydrated Cl₂ molecules
- 11. Enzymes convert glucose (M=180.2) to ethanol (M=46.1) according to the equation

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

What is the maximum mass of ethanol that can be made from 15.5 kg of glucose?

- **(A)** 0.256 kg
- **(B)** 0.512 kg
- (C) 3.96 kg
- **(D)** 7.93 kg

- 12. Commercial vinegar is a 5.00% by mass aqueous solution of acetic acid, CH_3CO_2H (M = 60.0). What is the molarity of acetic acid in vinegar? [density of vinegar = 1.00 g/mL]
 - **(A)** 0.833 *M*
- **(B)** 1.00 *M*
- **(C)** 1.20 *M*
- **(D)** 3.00 *M*
- 13. A 2.00 L balloon at 20.0°C and 745 mmHg floats to an altitude where the temperature is 10.0°C and the air pressure is 700 mmHg. What is the new volume of the balloon?
 - **(A)** 0.94 L **(B)** 1.06 L
- (C) 2.06 L (D) 2.20 L
- 14. Which family of elements has solid, liquid and gaseous members at 25°C and 1 atm pressure?
 - (A) alkali metals (Li Cs)
- **(B)** pnictogens (N Bi)
- (C) chalcogens (O Te)
- **(D)** halogens (F I)
- **15.** A gas diffuses one-third as fast as O₂ at 100 °C. This gas could be
 - (A) He (M = 4)
- **(B)** C_2H_5F (M = 48)
- (C) $C_7H_{12} (M = 96)$
- **(D)** C_5F_{12} (M = 288)
- **16.** Moist air is less dense than dry air at the same temperature and barometric pressure. Which is the best explanation for this observation?
 - (A) H_2O is a polar molecule but N_2 and O_2 are not.
 - **(B)** H_2O has a higher boiling point than N_2 or O_2 .
 - (C) H_2O has a lower molar mass than N_2 or O_2
 - **(D)** H_2O has a higher heat capacity than N_2 or O_2 .
- 17. Under certain conditions CO₂ melts rather than sublimes. To which transition in the phase diagram does this change correspond?

- (A) $A \rightarrow B$ (B) $A \rightarrow C$ (C) $B \rightarrow C$ (D) $C \rightarrow B$

- **18.** The critical temperature of water is the
 - (A) temperature at which solid, liquid and coexist.
 - **(B)** temperature at which water vapor condense
 - (C) maximum temperature at which liquid water car
 - (**D**) minimum temperature at which water vapor can exist.
- **19.** Which process is exothermic?
 - (A) condensation
- (B) fusion
- (C) sublimation
- (D) vaporization
- **20.** Use the thermodynamic information:

$$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$$

$$\Delta H^{\circ} = 90.4 \text{ kJ/mol}$$

$$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g)$$

$$\Delta H^{\circ} = 33.8 \text{ kJ/mol}$$

$$2NO_2(g) \rightarrow N_2O_4(g)$$

$$\Delta H^{\circ} = -58.0 \text{ kJ/mol}$$

to calculate ΔH° in kJ/mol for the reaction:

$$2NO(g) + O_2(g) \rightarrow N_2O_4(g)$$

- **(A)** -171.2
- **(B)** -114.6 **(C)** 114.6
- **(D)** 171.2
- 21. Determine the enthalpy change for the reaction of 5.00 g of Fe₂O₃ with aluminum metal according to the equation $Fe_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Fe(1)$

Substance	ΔH _f ° kJ/mol
$Fe_2O_3(s)$	-825.5
$Al_2O_3(s)$	-1675.7
Fe(l)	12.4

- **(A)** -25.8 kJ
- **(B)** -26.2 kJ
- (C) -52.4 kJ
- **(D)** -77.9 kJ
- 22. Which reaction has the most positive entropy change under standard conditions?

(A)
$$H_2O(g) + CO(g) \rightarrow H_2(g) + CO_2(g)$$

- (B) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- (C) $NH_3(g) \rightarrow NH_3(aq)$
- **(D)** $C_8H_{18}(1) \rightarrow C_8H_{18}(s)$
- 23. What are the signs of ΔH and ΔS for a reaction that is spontaneous only at low temperatures?
 - (A) ΔH is positive, ΔS is positive
 - **(B)** ΔH is positive, ΔS is negative
 - (C) ΔH is negative, ΔS is negative
 - **(D)** ΔH is negative, ΔS is positive

- 24. Which substance has a non-zero standard free energy of formation?
 - (A) Pb(s)
- **(B)** Hg(l)
- (C) $Cl_2(g)$
- **(D)** $O_3(g)$
- 25. Factors that can affect the rate of a chemical reaction between a solid and a solution include all of the following EXCEPT the
 - (A) concentration of the reactants in solution.
 - **(B)** volume of the container.
 - (C) size of the solid particles.
 - (**D**) temperature.
- **26.** The commercial production of ammonia is represented by the equation $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$. If the rate of disappearance of $H_2(g)$ is 1.2×10^{-3} mol/min, what is the rate of appearance of NH₃(g)?
 - (A) $2.4 \times 10^{-3} \text{ mol/min}$
- **(B)** $1.8 \times 10^{-3} \text{ mol/min}$
- (C) $1.2 \times 10^{-3} \text{ mol/min}$
- **(D)** $8.0 \times 10^{-4} \text{ mol/min}$
- 27. A reaction is endothermic with $\Delta H = 100$. kJ/mol. If the activation enthalpy of the forward reaction is 140. kJ/mol, what is the activation enthalpy of the reverse reaction?
 - (A) 40. kJ/mol
- (B) 100. kJ/mol
- (C) 140. kJ/mol
- (**D**) 240. kJ/mol
- 28. The first-order disappearance of a substance has a halflife of 34.0 s. How long does it take for the concentration of that substance to fall to 12.5% of its initial value?
 - **(A)** 11 s
- **(B)** 68 s
- **(C)** 102 s **(D)** 272 s
- **29.** The reaction $C_3H_7I + CI \longrightarrow C_3H_7CI + I$ is thought to occur in the polar solvent CH₃OH by the mechanism:

Step 1
$$C_3H_7I \rightarrow C_3H_7^+ + I^-$$
 (slow)

Step
$$2 C_3H_7^+ + Cl^- \rightarrow C_3H_7Cl$$
 (fast)

Which species is an intermediate in this reaction?

- (A) CH₃OH
- **(B)** $C_3H_7^+$
- (**C**) I
- (**D**) Cl⁻
- **30.** The times listed are those recorded at 25°C for the reaction below to produce a measurable amount of $I_2(aq)$:

$$S_2O_8^{2-}(aq) + 2\bar{I}(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$$

- 1		1		
	Experiment	Initial	Initial	Time
	•	$[S_2O_8^{2-}], M$	[Ν], M	(sec)
	1	0.0400	0.0800	39
	2	0.0400	0.0400	78
	3	0.0100	0.0800	156
	4	0.0200	0.0200	?

What is the expected time for experiment 4?

- (A) 156 sec
- **(B)** 234 sec
- (C) 312 sec
- (**D**) 624 sec

- 31. What is the equilibrium expression, K $2S(s) + 3O_2(g) = 2SO_3(g)$?
 - (A) $K_c = 2[SO_3]/(2[S]+3[O_2])$
- (C) $K_c = [SO_3]^2/[S]^2[O_2]^3$
- 32. In which reaction at equilibrium will the amount of reactants present increase with an increase in the container volume?
 - (A) $C(s) + CO_2(g) \longrightarrow 2CO(g)$
 - **(B)** $H_2(g) + F_2(g) = 2 HF(g)$
 - (C) $CO(g) + NO_2(g) \longrightarrow CO_2(g) + NO(g)$
 - **(D)** $N_2(g) + 3 H_2(g) \longrightarrow 2NH_3(g)$
- 33. What is the pH of a solution made by mixing 200. mL of 0.0657 M NaOH, 140. mL of 0.107 M HCl, and 160. mL of H₂O?
 - **(A)** 3.04
- **(B)** 2.74
- **(C)** 2.43
- **(D)** 2.27
- **34.** What is the percentage ionization of HCOOH molecules in a 0.10 M solution? $[K_a = 1.8 \times 10^{-4}]$
 - **(A)** 4.2%
- **(B)** 2.7%
- **(C)** 1.8%
- **(D)** 1.3%
- 35. What is the pH of a solution that is 0.20 M in HF and 0.40 M in NaF? $[K_a = 7.2 \times 10^{-4}]$
 - **(A)** 1.92
- **(B)** 2.84
- **(C)** 3.14
- **(D)** 3.44
- **36.** A 500. mL saturated solution of MgCO₃ (M = 84) is reduced to 120. mL by evaporation. What mass of solid MgCO₃ is formed? $[K_{sp} = 4.0 \times 10^{-5}]$
 - **(A)** 0.0013 g
- **(B)** 0.064 g
- (C) 0.20 g
- **(D)** 0.27 g
- **37.** Consider the following reactions:

$$X(NO_3)_2 + Y \rightarrow X + Y(NO_3)_2$$

$$X(NO_3)_2 + Z \rightarrow X + Z(NO_3)_2$$

$$Y(NO_3)_2 + Z \rightarrow No reaction$$

What is the correct order of increasing activity for the metals; X, Y, Z?

- $(\mathbf{A}) \quad \mathbf{X} < \mathbf{Y} < \mathbf{Z}$
- **(B)** X < Z < Y
- (C) Z < Y < X
- **(D)** Z < X < Y
- 38. For the cell
 - $Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$ $E^{\circ} = 0.76 \text{ V}$ Which change will increase the voltage of the cell?
 - (A) Increasing the size of the Zn electrode.
 - **(B)** Increasing the $[Zn^{2+}]$.
 - (C) Increasing the [H⁺].
 - **(D)** Increasing the pressure of the $H_2(g)$.

- **39.** When the half-reaction $NO_3 \rightarrow NO$ is balanced for one NO₃ in acid solution, ____ electron(s) is (are) ___
 - (A) 3 gained
- **(B)** 1 gained
- **(C)** 1 lost
- **(D)** 3 lost
- **40.** In the reaction

 $ClO_3^-(aq) + 5Cl^-(aq) + 6H^+(aq) \rightarrow 3Cl_2(g) + 3H_2O(l)$ the oxidizing and reducing agents are, respectively,

- (A) $Cl^{-}(aq)$ and $ClO_3^{-}(aq)$
- **(B)** $ClO_3^-(aq)$ and $Cl^-(aq)$
- (C) $ClO_3^-(aq)$ and $H^+(aq)$
- (**D**) $Cl^{-}(aq)$ and $H^{+}(aq)$
- 41. $Ag^+(aq) + e^- \rightarrow Ag(s)$ $E^{\circ} = 0.80 \text{ V}$

$$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$$
 $E^{\circ} = -0.28 \text{ V}$

Use the standard reduction potentials to determine the standard potential for the reaction:

$$Co(s) + 2Ag^{+}(aq) \rightarrow Co^{2+}(aq) + 2Ag(s)$$

- (**A**) 0.52V (**B**) 0.66V
- (C) 1.08V (D) 1.88V
- 42. What mass of copper is deposited when a current of 10.0A is passed through a solution of copper(II) nitrate for 30.6 seconds?
 - (A) 0.101g
- **(B)** 0.201g
- (**C**) 0.403g (**D**) 6.04g
- **43.** Which statement concerning visible light is correct?
 - (A) The product of wavelength and frequency is a constant for visible light in a vacuum.
 - **(B)** As the wavelength of light increases the energy of a photon increases.
 - (C) As the wavelength of light increases its amplitude also increases.
 - (**D**) Green light has a higher frequency than blue light.
- 44. Ernest Rutherford's scattering experiment demonstrated the existence of the
 - (A) alpha particle.
- (B) electron.
- (C) neutron.
- (D) nucleus.
- **45.** The removal of an electron from which gaseous atom requires the greatest amount of energy?
 - (A) Na
- **(B)** C1
- (C) K
- **(D)** Br
- **46.** For which pair of species is the difference in radii the greatest?
 - (A) Li and F
- **(B)** Li^+ and F^-
- (C) Li^+ and O^{2-}
- **(D)** O^{2-} and F^{-}

- Student Bounty.com 47. The electron configuration of cobalt (2) $1s^22s^22p^63s^23p^63d^{7}4s^2$. How many unpair in a gaseous Co³⁺ ion in its ground state?
 - **(A)** 0
- **(B)** 2

- **48.** Which element has the greatest electrical conductivity
 - (**A**) As
- **(B)** Ge
- (C) P
- (**D**) Sn
- **49.** How many valence electrons are in a persulfate ion, SO_5^{2-} ?
 - (A) 32
- **(B)** 34
- **(C)** 36
- **50.** Which diatomic molecule contains the strongest bond?
 - (**A**) H–Cl
- **(B)** H–F
- **(C)** Cl–Cl
- 51. The O-N-O bond angles in the nitrate ion, NO₃, are best described as being
 - (A) all 120°
- **(B)** all 109.5°
- (C) all 90°
- **(D)** two 90° , one 180°
- **52.** Which molecule has no permanent dipole moment?
 - (A) BCl₃
- (B) NCl₃
- (**C**) CHCl₃ (**D**) PCl₃
- **53.** When the compounds HF, H₂O, NH₃, and CH₄ are listed in order of increasing boiling point, which order is correct?
 - (A) $CH_4 < NH_3 < H_2O < HF$
 - **(B)** $NH_3 < CH_4 < H_2O < HF$
 - (C) $HF < CH_4 < H_2O < NH_3$
 - **(D)** $CH_4 < NH_3 < HF < H_2O$
- **54.** Which ionic solid has the greatest lattice energy?
 - (A) NaCl
- **(B)** MgO
- **(C)** KBr
- (D) SrS
- **55.** What is the IUPAC name for the molecule below?

- (A) heptane
- **(B)** 2-ethylpentane
- (C) 3-methylhexane
- (**D**) 4-ethylpentane
- **56.** How many different aldehydes have the formula $C_5H_{10}O$?
 - **(A)** 2
- **(B)** 3
- **(C)** 4
- **(D)** 5

- **57.** Which compound will rapidly decolorize bromine in CHCl₃?
 - (A) benzene
- (B) cyclohexane
- (C) hexane
- (D) 1-hexene
- **58.** Which combination of reactants produces an ester?
 - (A) acid and alcohol
- (B) acid and aldehyde
- (C) alcohol and aldehyde
- **(D)** aldehyde and potassium permanganate
- **59.** Which element is used to form cross-links between the strands of latex rubber?
 - (**A**) Fe
- **(B)** N
- (C) P
- **(D)** S
- **60.** The classification of a fat as saturated or unsaturated is based on whether
 - (A) it can be metabolized by humans.
 - **(B)** it contains carbon carbon double bonds.
 - **(C)** it has twenty or more carbon atoms.
 - **(D)** it is of animal origin.

END OF TEST

Student Bounty.com

2010 U.S. National Chemistry Olympiad Local Section Exam

KEY

Number Answer	Number	Answer
1. D	31.	D
2. A	32.	D
3. B	33.	C
4. C	34.	\mathbf{A}
5. A	35.	D
6. A	36.	C
7. D	37.	В
8. B	38.	C
9. C	39.	\mathbf{A}
10. B	40.	В
11. D	41.	\mathbf{C}
12. A	42.	\mathbf{A}
13. C	43.	\mathbf{A}
14. D	44.	D
15. D	45.	В
16. C	46.	\mathbf{C}
17. A	47.	\mathbf{C}
18. C	48.	D
19. A	49.	D
20. A	50.	В
21. A	51.	\mathbf{A}
22. B	52.	\mathbf{A}
23. C	53.	D
24. D	54.	В
25. B	55.	C
26. D	56.	C
27. A	57.	D
28. C	58.	\mathbf{A}
29. B	59.	D
30. C	60.	В