# 2010 U.S. NATIONAL CHEMISTRY OLYMPIAD LOCAL SECTION EXAM 

Prepared by the American Chemical Society Chemistry Olympiad Examinations Task Force

## OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, Chair, State University of New York, Cortland, NY

James Ayers, Mesa State College, Grand Junction, CO
Sherry Berman-Robinson, Consolidated HS, Orlando Park, IL (retired)
Seth Brown, University of Notre Dame, Notre Dame, IN
Peter Demmin, Amherst HS, Amherst, NY (retired)
Marian Dewane, Centennial HS, Boise, ID
Xu Duan, Queen Anne School, Upper Marlboro, MD
Valerie Ferguson, Moore HS, Moore, OK
Julie Furstenau, Thomas B. Doherty HS, Colorado Springs, CO
Kimberly Gardner, United States Air Force Academy, CO
Regis Goode, Ridge View High School, Columbia, SC
Paul Groves, South Pasadena HS, South Pasadena, CA
Preston Hayes, Glenbrook South HS, Glenbrook, IL (retired)
David Hostage, Taft School, Watertown, CT
Dennis Kliza, Kincaid School, Houston, TX
Adele Mouakad, St. John's School, San Juan, PR
Jane Nagurney, Scranton Preparatory School, Scranton, PA
Ronald Ragsdale, University of Utah, Salt Lake City, UT

## DIRECTIONS TO THE EXAMINER

This test is designed to be taken with an answer sheet on which the student records his or her responses. All answers are to be marked on that sheet, not written in the booklet. Each student should be provided with an answer sheet and scratch paper, both of which must be turned in with the test booklet at the end of the examination. Local Sections may use an answer sheet of their own choice.

The full examination consists of 60 multiple-choice questions representing a fairly wide range of difficulty. Students should be permitted to use non-programmable calculators. A periodic table and other useful information are provided on page two of this exam booklet for student reference.

Suggested Time: 60 questions- 110 minutes

## DIRECTIONS TO THE EXAMINEE

## DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO.

This is a multiple-choice examination with four choices for each question. There is only one correct or best answer to each question. When you select your choice, blacken the corresponding space on the answer sheet with your pencil. Make a heavy full mark, but no stray marks. If you decide to change your answer, be certain to erase your original answer completely.

Distributed by American Chemical Society, 1155 16 ${ }^{\text {th }}$ Street, N.W., Washington, DC 20036
All rights reserved. Printed in U.S.A.

| ABBREVIATIONS AND SYMBOLS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| amount of substance | $n$ | Faraday constant $F$ | molar | M |
| ampere | A | free energy $G$ | molar mass | M |
| atmosphere | atm | frequency $v$ | mole | mol |
| atomic mass unit | u | gas constant $R$ | Planck's constant | $h$ |
| Avogadro constant | $N_{\text {A }}$ | gram $\quad \mathrm{g}$ | pressure | $P$ |
| Celsius temperature | ${ }^{\circ} \mathrm{C}$ | hour h | rate constant | $k$ |
| centi- prefix | c | joule J | reaction quotient | Q |
| coulomb | C | kelvin K | second | s |
| density | d | kilo- prefix $\quad \mathrm{k}$ | speed of light | c |
| electromotive force | E | liter L | temperature, K | $T$ |
| energy of activation | $E_{\text {a }}$ | measure of pressure mmHg | time | $t$ |
| enthalpy | H | milli- prefix m | volt | V |
| entropy | S | molal m | volume | V |
| equilibrium constant | K |  |  |  |

$R=8.314 \mathrm{~J} \cdot \mathrm{mo}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{mo}^{2}$
$1 \mathrm{~F}=96,500 \mathrm{C} \cdot \mathrm{mol}$
$1 \mathrm{~F}=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$


| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
| 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
| 232.0 | 231.0 | 238.0 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) |

## DIRECTIONS

When you have selected your answer to each question, blacken the corresponding space on the answer sheet using a s Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark completely.
There is only one correct answer to each question. Any questions for which more than one response has been blackened will counted.

Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.

1. A student is asked to measure 30.0 g of methanol ( $\mathrm{d}=0.7914 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$ ) but has only a graduated cylinder with which to measure it. What volume of methanol should the student use to obtain the required 30.0 g ?
(A) 23.7 mL
(B) 30.0 mL
(C) 32.4 mL
(D) 37.9 mL
2. A flame test was performed to confirm the identity of a metal ion in solution. The result was a green flame. Which of the following metal ions is indicated?
(A) copper
(B) sodium
(C) strontium
(D) zinc
3. When phenolphthalein is added to an aqueous solution containing one of the following solutes the solution turns pink. Which solute is present?
(A) NaCl
(B) $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
(C) LiBr
(D) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
4. Solid camphor is insoluble in water but is soluble in vegetable oil. The best explanation for this behavior is that camphor is a(n)
(A) ionic solid
(B) metallic solid
(C) molecular solid
(D) network solid
5. A student performed an experiment to determine the ratio of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{CuSO}_{4}$ in a sample of hydrated copper(II) sulfate by heating it to drive off the water and weighing the solid before and after heating. The formula obtained experimentally was $\mathrm{CuSO}_{4} \cdot 5.5 \mathrm{H}_{2} \mathrm{O}$ but the accepted formula is $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Which error best accounts for the difference in results?
(A) During heating some of the hydrated copper(II) sulfate was lost.
(B) The hydrated sample was not heated long enough to drive off all the water.
(C) The student weighed out too much sample initially.
(D) The student used a balance that gave weights that were consistently too high by 0.10 g .
6. An aqueous solution is known to contain $\mathrm{Ag}^{+}, \mathrm{Mg}^{2+}$, and $\mathrm{Sr}^{2+}$ ions. Which reagent should be used to selectively precipitate the $\mathrm{Ag}^{+}$?
(A) 0.20 M NaCl
(B) 0.20 M NaOH
(C) $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) $0.20 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$
7. What is the coefficient for $\mathrm{O}_{2}$ when the following reaction $\ldots \mathrm{As}_{2} \mathrm{~S}_{3}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{As}_{2} \mathrm{O}_{3}+\ldots \mathrm{SO}_{2}$ is correctly balanced with the smallest integer coefficients?
(A) 5
(B) 6
(C) 8
(D) 9
8. Which compound contains the highest percentage of nitrogen by mass?
(A) $\mathrm{NH}_{2} \mathrm{OH}(M=33.0)$
(B) $\mathrm{NH}_{4} \mathrm{NO}_{2}(M=64.1)$
(C) $\mathrm{N}_{2} \mathrm{O}_{3}(M=76.0)$
(D) $\mathrm{NH}_{4} \mathrm{NH}_{2} \mathrm{CO}_{2}(M=78.1)$
9. How many neutrons are in 0.025 mol of the isotope ${ }_{24}^{54} \mathrm{Cr}$ ?
(A) $1.5 \times 10^{22}$
(B) $3.6 \times 10^{23}$
(C) $4.5 \times 10^{23}$
(D) $8.1 \times 10^{23}$
10. Magnesium chloride dissolves in water to form
(A) hydrated $\mathrm{MgCl}_{2}$ molecules
(B) hydrated $\mathrm{Mg}^{2+}$ ions and hydrated $\mathrm{Cl}^{-}$ions
(C) hydrated $\mathrm{Mg}^{2+}$ ions and hydrated $\mathrm{Cl}_{2}{ }^{2-}$ ions
(D) hydrated Mg atoms and hydrated $\mathrm{Cl}_{2}$ molecules
11. Enzymes convert glucose $(M=180.2)$ to ethanol $(M=46.1)$ according to the equation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}
$$

What is the maximum mass of ethanol that can be made from 15.5 kg of glucose?
(A) 0.256 kg
(B) 0.512 kg
(C) 3.96 kg
(D) 7.93 kg
12. Commercial vinegar is a $5.00 \%$ by mass aqueous solution of acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(M=60.0)$. What is the molarity of acetic acid in vinegar? [density of vinegar $=1.00 \mathrm{~g} / \mathrm{mL}$ ]
(A) 0.833 M
(B) 1.00 M
(C) 1.20 M
(D) 3.00 M
13. A 2.00 L balloon at $20.0^{\circ} \mathrm{C}$ and 745 mmHg floats to an altitude where the temperature is $10.0^{\circ} \mathrm{C}$ and the air pressure is 700 mmHg . What is the new volume of the balloon?
(A) 0.94 L
(B) 1.06 L
(C) $\quad 2.06 \mathrm{~L}$
(D) 2.20 L
14. Which family of elements has solid, liquid and gaseous members at $25^{\circ} \mathrm{C}$ and 1 atm pressure?
(A) alkali metals $(\mathrm{Li}-\mathrm{Cs})$
(B) pnictogens $(\mathrm{N}-\mathrm{Bi})$
(C) chalcogens $(\mathrm{O}-\mathrm{Te})$
(D) halogens ( F - I)
15. A gas diffuses one-third as fast as $\mathrm{O}_{2}$ at $100{ }^{\circ} \mathrm{C}$. This gas could be
(A) $\mathrm{He}(M=4)$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}(M=48)$
(C) $\mathrm{C}_{7} \mathrm{H}_{12}(M=96)$
(D) $\mathrm{C}_{5} \mathrm{~F}_{12}(M=288)$
16. Moist air is less dense than dry air at the same temperature and barometric pressure. Which is the best explanation for this observation?
(A) $\mathrm{H}_{2} \mathrm{O}$ is a polar molecule but $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ are not.
(B) $\mathrm{H}_{2} \mathrm{O}$ has a higher boiling point than $\mathrm{N}_{2}$ or $\mathrm{O}_{2}$.
(C) $\mathrm{H}_{2} \mathrm{O}$ has a lower molar mass than $\mathrm{N}_{2}$ or $\mathrm{O}_{2}$.
(D) $\mathrm{H}_{2} \mathrm{O}$ has a higher heat capacity than $\mathrm{N}_{2}$ or $\mathrm{O}_{2}$.
17. Under certain conditions $\mathrm{CO}_{2}$ melts rather than sublimes. To which transition in the phase diagram does this change correspond?

$\begin{array}{lll}\text { (A) } \mathrm{A} \rightarrow \mathrm{B} & \text { (B) } \mathrm{A} \rightarrow \mathrm{C} & \text { (C) } \mathrm{B} \rightarrow \mathrm{C} \quad \text { (D) } \mathrm{C} \rightarrow \mathrm{B}\end{array}$
18. The critical temperature of water is the
(A) temperature at which solid, liquid ano coexist.
(B) temperature at which water vapor condenses.
(C) maximum temperature at which liquid water can exist.
(D) minimum temperature at which water vapor can exist.
19. Which process is exothermic?
(A) condensation
(B) fusion
(C) sublimation
(D) vaporization
20. Use the thermodynamic information:
$\begin{array}{lc}1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) & \Delta \mathrm{H}^{\circ}=90.4 \mathrm{~kJ} / \mathrm{mol} \\ 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=33.8 \mathrm{~kJ} / \mathrm{mol} \\ 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-58.0 \mathrm{~kJ} / \mathrm{mol}\end{array}$ to calculate $\Delta \mathrm{H}^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$ for the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(A) -171.2
(B) -114.6
(C) 114.6
(D) 171.2
21. Determine the enthalpy change for the reaction of 5.00 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with aluminum metal according to the equation $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})$

| Substance | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{kJ} / \mathrm{mol}$ |
| :--- | :---: |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ | -825.5 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ | -1675.7 |
| $\mathrm{Fe}(\mathrm{l})$ | 12.4 |

(A) -25.8 kJ
(B) -26.2 kJ
(C) -52.4 kJ
(D) -77.9 kJ
22. Which reaction has the most positive entropy change under standard conditions?
(A) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
(B) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(C) $\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})$
(D) $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~s})$
23. What are the signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for a reaction that is spontaneous only at low temperatures?
(A) $\Delta \mathrm{H}$ is positive, $\Delta \mathrm{S}$ is positive
(B) $\Delta \mathrm{H}$ is positive, $\Delta \mathrm{S}$ is negative
(C) $\Delta \mathrm{H}$ is negative, $\Delta \mathrm{S}$ is negative
(D) $\Delta \mathrm{H}$ is negative, $\Delta \mathrm{S}$ is positive
24. Which substance has a non-zero standard free energy of formation?
(A) $\mathrm{Pb}(\mathrm{s})$
(B) $\mathrm{Hg}(1)$
(C) $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
(D) $\mathrm{O}_{3}(\mathrm{~g})$
25. Factors that can affect the rate of a chemical reaction between a solid and a solution include all of the following EXCEPT the
(A) concentration of the reactants in solution.
(B) volume of the container.
(C) size of the solid particles.
(D) temperature.
26. The commercial production of ammonia is represented by the equation $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$.
If the rate of disappearance of $\mathrm{H}_{2}(\mathrm{~g})$ is $1.2 \times 10^{-3} \mathrm{~mol} / \mathrm{min}$, what is the rate of appearance of $\mathrm{NH}_{3}(\mathrm{~g})$ ?
(A) $2.4 \times 10^{-3} \mathrm{~mol} / \mathrm{min}$
(B) $1.8 \times 10^{-3} \mathrm{~mol} / \mathrm{min}$
(C) $1.2 \times 10^{-3} \mathrm{~mol} / \mathrm{min}$
(D) $8.0 \times 10^{-4} \mathrm{~mol} / \mathrm{min}$
27. A reaction is endothermic with $\Delta \mathrm{H}=100 . \mathrm{kJ} / \mathrm{mol}$. If the activation enthalpy of the forward reaction is 140 . $\mathrm{kJ} / \mathrm{mol}$, what is the activation enthalpy of the reverse reaction?
(A) $40 . \mathrm{kJ} / \mathrm{mol}$
(B) $100 . \mathrm{kJ} / \mathrm{mol}$
(C) $140 . \mathrm{kJ} / \mathrm{mol}$
(D) $240 . \mathrm{kJ} / \mathrm{mol}$
28. The first-order disappearance of a substance has a halflife of 34.0 s . How long does it take for the concentration of that substance to fall to $12.5 \%$ of its initial value?
(A) 11 s
(B) 68 s
(C) 102 s
(D) 272 s
29. The reaction $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}+\mathrm{Cl}^{-} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{I}^{-}$is thought to occur in the polar solvent $\mathrm{CH}_{3} \mathrm{OH}$ by the mechanism:

Step $1 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}^{+}+\mathrm{I}^{-}$(slow)
Step $2 \mathrm{C}_{3} \mathrm{H}_{7}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$ (fast)
Which species is an intermediate in this reaction?
(A) $\mathrm{CH}_{3} \mathrm{OH}$
(B) $\mathrm{C}_{3} \mathrm{H}_{7}^{+}$
(C) $\mathrm{I}^{-}$
(D) $\mathrm{Cl}^{-}$
30. The times listed are those recorded at $25^{\circ} \mathrm{C}$ for the reaction below to produce a measurable amount of $\mathrm{I}_{2}(\mathrm{aq})$ :

| $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Experiment | Initial <br> $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right], \mathrm{M}$ | Initial <br> $\left[\mathrm{I}^{-}\right], \mathrm{M}$ | Time <br> $(\mathrm{sec})$ |
| 1 | 0.0400 | 0.0800 | 39 |
| 2 | 0.0400 | 0.0400 | 78 |
| 3 | 0.0100 | 0.0800 | 156 |
| 4 | 0.0200 | 0.0200 | $?$ |

What is the expected time for experiment 4 ?
(A) 156 sec
(B) 234 sec
(C) 312 sec
(D) 624 sec
31. What is the equilibrium expression, $K_{c}$ $2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ ?
(A) $K_{c}=2\left[\mathrm{SO}_{3}\right] /\left(2[\mathrm{~S}]+3\left[\mathrm{O}_{2}\right]\right)$
(B) $K_{c}$
(C) $K_{c}=\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{S}^{2}\left[\mathrm{O}_{2}\right]^{3}\right.$
(D)
D) $K_{c}=[\mathrm{SO}$
32. In which reaction at equilibrium will the amount of reactants present increase with an increase in the container volume?
(A) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
(B) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g})$
(C) $\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
(D) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
33. What is the pH of a solution made by mixing $200 . \mathrm{mL}$ of $0.0657 \mathrm{M} \mathrm{NaOH}, 140 . \mathrm{mL}$ of 0.107 M HCl , and 160 . mL of $\mathrm{H}_{2} \mathrm{O}$ ?
(A) 3.04
(B) 2.74
(C) 2.43
(D) 2.27
34. What is the percentage ionization of HCOOH molecules in a 0.10 M solution? $\left[K_{a}=1.8 \times 10^{-4}\right]$
(A) $4.2 \%$
(B) $2.7 \%$
(C) $1.8 \%$
(D) $1.3 \%$
35. What is the pH of a solution that is 0.20 M in HF and 0.40 M in $\mathrm{NaF} ?\left[K_{a}=7.2 \times 10^{-4}\right]$
(A) 1.92
(B) 2.84
(C) 3.14
(D) 3.44
36. A 500 . mL saturated solution of $\mathrm{MgCO}_{3}(M=84)$ is reduced to $120 . \mathrm{mL}$ by evaporation. What mass of solid $\mathrm{MgCO}_{3}$ is formed? $\left[K_{\text {sp }}=4.0 \times 10^{-5}\right]$
(A) 0.0013 g
(B) 0.064 g
(C) 0.20 g
(D) 0.27 g
37. Consider the following reactions:
$\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Y} \rightarrow \mathrm{X}+\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Z} \rightarrow \mathrm{X}+\mathrm{Z}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Z} \rightarrow$ No reaction
What is the correct order of increasing activity for the metals; $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ?
(A) $\mathrm{X}<\mathrm{Y}<\mathrm{Z}$
(B) $\mathrm{X}<\mathrm{Z}<$ Y
(C) Z $<$ Y $<$ X
(D) $\mathrm{Z}<\mathrm{X}<$ Y
38. For the cell
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{E}^{\circ}=0.76 \mathrm{~V}$
Which change will increase the voltage of the cell?
(A) Increasing the size of the Zn electrode.
(B) Increasing the $\left[\mathrm{Zn}^{2+}\right]$.
(C) Increasing the $\left[\mathrm{H}^{+}\right]$.
(D) Increasing the pressure of the $\mathrm{H}_{2}(\mathrm{~g})$.
39. When the half-reaction $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$ is balanced for one $\mathrm{NO}_{3}^{-}$in acid solution, $\qquad$ electron(s) is (are) $\qquad$ .
(A) 3 gained
(B) 1 gained
(C) 1 lost
(D) 3 lost
40. In the reaction
$\mathrm{ClO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Cl}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ the oxidizing and reducing agents are, respectively,
(A) $\mathrm{Cl}^{-}(\mathrm{aq})$ and $\mathrm{ClO}_{3}^{-}(\mathrm{aq})$
(B) $\mathrm{ClO}_{3}^{-}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$
(C) $\mathrm{ClO}_{3}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$
(D) $\mathrm{Cl}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$
41. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}^{\circ}=0.80 \mathrm{~V}$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-0.28 \mathrm{~V}$
Use the standard reduction potentials to determine the standard potential for the reaction:
$\mathrm{Co}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
(A) 0.52 V
(B) 0.66 V
(C) 1.08 V
(D) 1.88 V
42. What mass of copper is deposited when a current of 10.0 A is passed through a solution of copper(II) nitrate for 30.6 seconds?
(A) 0.101 g
(B) 0.201 g
(C) 0.403 g
(D) 6.04 g
43. Which statement concerning visible light is correct?
(A) The product of wavelength and frequency is a constant for visible light in a vacuum.
(B) As the wavelength of light increases the energy of a photon increases.
(C) As the wavelength of light increases its amplitude also increases.
(D) Green light has a higher frequency than blue light.
44. Ernest Rutherford's scattering experiment demonstrated the existence of the
(A) alpha particle.
(B) electron.
(C) neutron.
(D) nucleus.
45. The removal of an electron from which gaseous atom requires the greatest amount of energy?
(A) Na
(B) Cl
(C) K
(D) Br
46. For which pair of species is the difference in radii the greatest?
(A) Li and F
(B) $\mathrm{Li}^{+}$and $\mathrm{F}^{-}$
(C) $\mathrm{Li}^{+}$and $\mathrm{O}^{2-}$
(D) $\mathrm{O}^{2-}$ and $\mathrm{F}^{-}$
47. The electron configuration of cobalt ( $\mathbf{4}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7} 4 s^{2}$. How many unpait in a gaseous $\mathrm{Co}^{3+}$ ion in its ground state?
(A) 0
(B) 2
(C) 4
48. Which element has the greatest electrical conductivity
(A) As
(B) Ge
(C) P
(D) Sn
49. How many valence electrons are in a persulfate ion, $\mathrm{SO}_{5}{ }^{2-}$ ?
(A) 32
(B) 34
(C) 36
(D) 38
50. Which diatomic molecule contains the strongest bond?
(A) $\mathrm{H}-\mathrm{Cl}$
(B) $\mathrm{H}-\mathrm{F}$
(C) $\mathrm{Cl}-\mathrm{Cl}$
(D) F-F
51. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles in the nitrate ion, $\mathrm{NO}_{3}{ }^{-}$, are best described as being
(A) all $120^{\circ}$
(B) all $109.5^{\circ}$
(C) all $90^{\circ}$
(D) two $90^{\circ}$, one $180^{\circ}$
52. Which molecule has no permanent dipole moment?
(A) $\mathrm{BCl}_{3}$
(B) $\mathrm{NCl}_{3}$
(C) $\mathrm{CHCl}_{3}$
(D) $\mathrm{PCl}_{3}$
53. When the compounds $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and $\mathrm{CH}_{4}$ are listed in order of increasing boiling point, which order is correct?
(A) $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
(B) $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
(C) $\mathrm{HF}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
(D) $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}$
54. Which ionic solid has the greatest lattice energy?
(A) NaCl
(B) MgO
(C) KBr
(D) SrS
55. What is the IUPAC name for the molecule below?

(A) heptane
(B) 2-ethylpentane
(C) 3-methylhexane
(D) 4-ethylpentane
56. How many different aldehydes have the formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ ?
(A) 2
(B) 3
(C) 4
(D) 5
57. Which compound will rapidly decolorize bromine in $\mathrm{CHCl}_{3}$ ?
(A) benzene
(B) cyclohexane
(C) hexane
(D) 1-hexene
58. Which combination of reactants produces an ester?
(A) acid and alcohol
(B) acid and aldehyde
(C) alcohol and aldehyde
(D) aldehyde and potassium
permanganate
59. Which element is used to form cross-links between the strands of latex rubber?
(A) Fe
(B) N
(C) P
(D) S
60. The classification of a fat as saturated or unsaturated is based on whether
(A) it can be metabolized by humans.
(B) it contains carbon - carbon double bonds.
(C) it has twenty or more carbon atoms.
(D) it is of animal origin.

## 2010 U.S. National Chemistry Olympiad Local Section Exam

## KEY

| Number | Answer | Number | Answer |
| :---: | :---: | :---: | :---: |
| 1. | D | 31. | D |
| 2. | A | 32. | D |
| 3. | B | 33. | C |
| 4. | C | 34. | A |
| 5. | A | 35. | D |
| 6. | A | 36. | C |
| 7. | D | 37. | B |
| 8. | B | 38. | C |
| 9. | C | 39. | A |
| 10. | B | 40. | B |
| 11. | D | 41. | C |
| 12. | A | 42. | A |
| 13. | C | 43. | A |
| 14. | D | 44. | D |
| 15. | D | 45. | B |
| 16. | C | 46. | C |
| 17. | A | 47. | C |
| 18. | C | 48. | D |
| 19. | A | 49. | D |
| 20. | A | 50. | B |
| 21. | A | 51. | A |
| 22. | B | 52. | A |
| 23. | C | 53. | D |
| 24. | D | 54. | B |
| 25. | B | 55. | C |
| 26. | D | 56. | C |
| 27. | A | 57. | D |
| 28. | C | 58. | A |
| 29. | B | 59. | D |
| 30. | C | 60. | B |

