

2007 U. S. NATIONAL CHEMISTRY OLYMPIAD LOCAL SECTION EXAM

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland, Chair
Sherry Berman-Robinson, Consolidated High School, IL
Peter E. Demmin (retired), Amherst Central High School, NY
Marian Dewane, Centennial High School, ID
Kimberly Gardner, United States Air Force Academy, CO
Preston Hayes, Glenbrook South High School, IL
David W. Hostage, Taft School, CT
Adele Mouakad, St. John's School, PR
Jane Nagurney, Scranton Preparatory School, PA
Ronald O. Ragsdale, University of Utah, UT
Todd Trout, Lancaster Country Day School, PA

DIRECTIONS TO THE EXAMINER

This test is designed to be taken with an answer sheet on which the student records his or her responses. All answers are to be marked on that sheet, not written in the booklet. Each student should be provided with an answer sheet and scratch paper, both of which must be turned in with the test booklet at the end of the examination. Local Sections may use an answer sheet of their own choice.

The full examination consists of 60 multiple-choice questions representing a fairly wide range of difficulty. Students should be permitted to use non-programmable calculators. A periodic table and other useful information are provided on page two of this exam booklet for student reference.

Suggested Time: 60 questions - 110 minutes

DIRECTIONS TO THE EXAMINEE

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO.

This is a multiple-choice examination with four choices for each question. There is only one correct or best answer to each question. When you select your choice, blacken the corresponding space on the answer sheet with your pencil. Make a heavy full mark, but no stray marks. If you decide to change your answer, be certain to erase your original answer completely.

Not valid for use as an ACS Olympiad Local Section Exam after March 28, 2007. STOCK CODE OL07
Distributed by the ACS DivCHED Examinations Institute, University of Wisconsin - Milwaukee, Milwaukee, WI.
All rights reserved. Printed in U.S.A.

ABBREVIATIONS AND SYMBOLS					
ampere	A	Faraday constant	F	molal	m
atmosphere	atm	formula molar mass	M	molar	M
atomic mass unit	u	free energy	G	molar mass	M
atomic molar mass	A	frequency	v	mole	mol
Avogadro constant	N_{A}	gas constant	R	Planck's constant	h
Celsius temperature	${ }^{\circ} \mathrm{C}$	gram	g	pressure	P
centi- prefix	c	heat capacity	C_{p}	rate constant	k
coulomb	C	hour	h	retention factor	R_{f}
electromotive force	E	joule	J	lecond	s
energy of activation	E_{a}	kelvin	K	temperature, K	T
enthalpy	H	kilo- prefix	k	time	t
entropy	S	L	volt	V	
equilibrium constant	K	liter	m		

$R=8.314 \mathrm{~J} \cdot \mathrm{mo}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{mo}^{2}$
$1 F=96,500 \mathrm{C} \cdot \mathrm{mol}^{-1}$
$1 \mathrm{~F}=96,500 \mathrm{~J} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~mol}^{-1}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$

EQUATIONS

$E=E^{\circ}-\frac{R T}{n F} \ln Q \quad \ln K=\left(\frac{-\Delta H}{R}\right)\left(\frac{1}{T}\right)+$ constant $\quad \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$

1				ER	OD	C	A	E	F	TH	C E	E1	E	Γ			18
1A																	8A
1																	2
H	2											13	14	15	16	17	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
$\underset{(223)}{\mathbf{F r}}$	$\underset{\substack{\mathbf{R a} \\(226)}}{ }$	Ac (227)	$\underset{(261)}{\mathbf{R f}}$	$\underset{(262)}{\text { Db }}$	$\underset{(263)}{\mathbf{S g}}$	$\underset{(262)}{\text { Bh }}$	$\underset{(265)}{\mathbf{H s}}$	$\underset{(266)}{\mathbf{M t}}$	$\underset{(269)}{\text { Uun }}$	Uuu (272)	Uub (277)		Uuq (2??)		Uuh (2??)		$\underset{(2 ? ?)}{\text { Uuo }}$

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

DIRECTIONS

- When you have selected your answer to each question, make sure your answer is clearly legible on the answer she \#2 pencil. For Scantron ${ }^{\circledR}$ style sheets, make a heavy, full mark, but no stray marks. If you decide to change an answe unwanted answer very carefully.
- There is only one correct answer to each question. Any questions for which more than one response is indicated will not be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.

1. Which compound is most soluble in water?
(A) AgCl
(B) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
(C) BaCl_{2}
(D) BaCO_{3}
2. Which piece of laboratory equipment should be used to deliver a 10.00 mL sample of acid from a stock container to a flask for a titration?
(A) 1.0 mL Beral pipet used 10 times
(B) 10 mL graduated cylinder
(C) 10 mL volumetric pipet
(D) 25 mL beaker
3. When solid KOH is mixed with solid $\mathrm{NH}_{4} \mathrm{Cl}$ a gas is produced. Which gas is it?
(A) Cl_{2}
(B) H_{2}
(C) HCl
(D) NH_{3}
4. An experiment is carried out to determine the molar mass of a compound by the freezing point depression method using the equation

$$
M M=7.05 \frac{\text { mass solute }}{\Delta \mathrm{T} \times \mathrm{kg} \text { solvent }}
$$

The data below are collected.

Mass of empty test tube	42.0 g
Mass of test tube and solvent	73.6 g
Mass of solute dissolved in solvent	2.000 g
Freezing point of pure solvent	$78.1{ }^{\circ} \mathrm{C}$
Freezing point of solution	$77.6^{\circ} \mathrm{C}$

How many significant figures can be reported for the molar mass of the solute?
(A) 1
(B) 2
(C) 3
(D) 4
5. Which compound forms a colorless solution when dissolved in $\mathrm{H}_{2} \mathrm{O}$?
(A) $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$
(B) KMnO_{4}
(C) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(D) ZnCl_{2}
6. If an individual spills some $8 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ on her/his arm, what treatment should be used?
(A) Neutralize it immediately with a paste of NaOH in $\mathrm{H}_{2} \mathrm{O}$.
(B) Rinse it with $\mathrm{H}_{2} \mathrm{O}$ followed by a dilute solution of NaHCO_{3}.
(C) Wash it with a solution of concentrated aqueous NH_{3}.
(D) Wrap it tightly with gauze coated with petroleum jelly.
7. A saturated aqueous solution of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, contains 525 g of sucrose (molar mass 342) per 100 . g of water. What is the $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} / \mathrm{H}_{2} \mathrm{O}$ molecular ratio in this solution?
(A) $5.25 / 1$
(B) $1.54 / 1$
(C) $1 / 1$
(D) $0.276 / 1$
8. The mineral beryl contains 5.03% beryllium by mass and contains three beryllium atoms per formula unit. Determine the formula mass of beryl.
(A) $950 \mathrm{~g} / \mathrm{mol}$
(B) $537 \mathrm{~g} / \mathrm{mol}$
(C) $270 \mathrm{~g} / \mathrm{mol}$
(D) $179 \mathrm{~g} / \mathrm{mol}$
9. A $100 . \mathrm{mL}$ portion of 0.250 M calcium nitrate solution is mixed with 400 . mL of 0.100 M nitric acid solution. What is the final concentration of the nitrate ion?
(A) 0.180 M
(B) 0.130 M
(C) 0.0800 M
(D) 0.0500 M
10. According to the equation,
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
how many moles of $\mathrm{NH}_{3}(\mathrm{~g})$ could be formed from the reaction of 0.22 mol of $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ with 0.87 mol of $\mathrm{H}_{2}(\mathrm{~g})$?
(A) 0.29 mol
(B) 0.44 mol
(C) 0.73 mol
(D) 1.1 mol
11. Water can be decomposed by the passage of an electric current according to the equation

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

How many moles of $\mathrm{H}_{2}(\mathrm{~g})$ can be produced from the passage of 4.8×10^{21} electrons?
(A) 2.00×10^{-3}
(B) 4.0×10^{-3}
(C) 8.0×10^{-3}
(D) 1.6×10^{-2}
12. This diagram represents the behavior of a pure solvent upon cooling. Which of the diagrams below best represents the cooling curve of a solution in that solvent upon cooling? (Assume that
 all diagrams are drawn to the same scale.)
(A)

(B)

(C)

(D)

13. All of these are characteristics of MOST ionic compounds in the solid phase EXCEPT
(A) high electrical conductivity
(B) high melting point
(C) solubility in water
(D) insolubility in organic solvents
14. Which noble gas effuses approximately twice as fast as Kr ?

Molar Mass $(\mathbf{g} / \mathbf{m o l})$	
Ne	20.18
Ar	39.95
Kr	83.80
Xe	131.3
Rn	222

(A) Ne
(B) Ar
(C) Xe
(D) Rn
15. Rank the enthalpies of fusion, sublima vaporization for water.
(A) sublimation $=$ vaporization $=$ fusion
(B) vaporization < sublimation < fusion
(C) fusion < sublimation < vaporization
(D) fusion < vaporization < sublimation
16. In this diagram, which bonds represent hydrogen bonds?

(A) 1 only
(B) 2 only
(C) 1 and 3 only
(D) 1, 2 and 3
17. A sample of $\mathrm{C}_{2} \mathrm{H}_{6}$ gas initially at $50{ }^{\circ} \mathrm{C}$ and 720 mmHg is heated to $100{ }^{\circ} \mathrm{C}$ in a container of constant volume. What is the new pressure (in mmHg)?
(A) 360
(B) 623
(C) 831
(D) 1440
18. All of the following properties of liquids increase with increasing strengths of intermolecular forces EXCEPT
(A) boiling point
(B) enthalpy of vaporization
(C) vapor pressure
(D) viscosity
19. The standard enthalpy of formation for $\mathrm{NH}_{3}(\mathrm{~g})$ is $-46.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

(A) -92.2 kJ
(B) -46.1 kJ
(C) 46.1 kJ
(D) 92.2 kJ
20. What is the specific heat capacity of mercury (in $\mathrm{J} \cdot \mathrm{g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$) if a 25.0 g sample requires 19.3 J to raise its temperature from $24.5^{\circ} \mathrm{C}$ to $30.0^{\circ} \mathrm{C}$?
(A) 0.026
(B) 0.032
(C) 0.14
(D) 7.1
21. Which are
I. combustion of ethane II. dehydration of barium chloride dihydrate processes?
(A) I only
(B) II only
(C) both I and II
(D) neither I nor II
22. Which has the highest standard molar entropy?
(A) $\mathrm{O}_{2}(\mathrm{~g})$
(B) $\mathrm{SO}_{2}(\mathrm{~g})$
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(D) $\mathrm{PbO}_{2}(\mathrm{~s})$
23. Which is always true for a specific system during a spontaneous reaction?
(A) $\Delta \mathrm{H}<0$
(B) $\Delta \mathrm{H} \geq 0$
(C) Δ G <0
(D) $\Delta \mathrm{S}>0$
24. Calculate the change in enthalpy (in kJ per mole of CO_{2}) for the decomposition of sodium hydrogen carbonate from

$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}\left(\mathbf{k J} \cdot \mathbf{m o l}^{\mathbf{- 1}}\right)$	
$\mathrm{NaHCO}_{3}(\mathrm{~s})$	-947.7
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	-1130.9
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5

$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
(A) 129.2
(B) -818.5
(C) -1766.2
(D) -3661.6
25. The plot shows the volume of H_{2} gas produced as a function of time by the reaction of a given mass of magnesium turnings with excess 1 M HCl . What graph results from the reaction of an equal mass of magnesium
 turnings with excess 2 M HCl ? (Assume all graphs are plotted on the same scale as the one shown above.)
(A)

(B)

(C)

(D)

26. $\quad 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ at a certain temperature is $0.016 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{~min}^{-1}$. What is the rate of formation of $\mathrm{NO}_{2}(\mathrm{~g})\left(\right.$ in $\left.\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~min}^{-1}\right)$ at this temperature?
(A) 0.0080
(B) 0.016
(C) 0.032
(D) 0.064
27. What are the units of the rate constant for a second order reaction?
(A) s^{-1}
(B) $\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$
(C) $\mathrm{L} \cdot \mathrm{s} \cdot \mathrm{mol}^{-1}$
(D) $\mathrm{L}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
28.
 first order process, how much time is required to go from the second box to the third box?
(A) 1 min
(B) 2 min
(C) 4 min
(D) 8 min
29. A catalyst affects the rate of a chemical reaction by
(A) increasing the average kinetic energy of the reactants.
(B) increasing the number of collisions between the reactants.
(C) decreasing the energy difference between the reactants and products.
(D) providing an alternate reaction pathway with a lower activation energy.
30. A hypothetical reaction has a rate law of:

Rate $=k[A]^{2}[B]$.
Which statement about this reaction is most probably correct?
(A) Doubling the concentration of A will double the rate of the reaction.
(B) Tripling [A] will affect the rate twice as much as tripling [B].
(C) The reaction mechanism involves the formation of B_{2} at some stage.
(D) The reaction mechanism involves more than one step.
31. For which reaction at equilibrium does a decrease in volume of the container cause a decrease in product(s) at constant temperature?
(A) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(B) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
(C) $\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
(D) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
32. Which is the weakest acid?
(A) ascorbic acid $\left(\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}\right)$
(B) boric acid $\left(\mathrm{K}_{\mathrm{a}}=5.8 \times 10^{-10}\right)$
(C) butyric acid $\left(\mathrm{K}_{\mathrm{a}}=1.5 \times 10^{-5}\right)$
(D) hydrocyanic acid $\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
33. At $20.0^{\circ} \mathrm{C}$ water has $\mathrm{K}_{\mathrm{W}}=6.807 \times 10^{-15}$. What is the pH of pure water at this temperature?
(A) 6.667
(B) 6.920
(C) 7.000
(D) 7.084
34. Which solution has the highest pH ?

(A) $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(B) 0.10 M HCN
(C) $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}$
(D) 0.10 M NaBr
35. What happens to the pH of a buffer solution when it is diluted by a factor of 10 ?
(A) The buffer pH decreases by 1 unit.
(B) The buffer pH increases by 1 unit.
(C) The change in pH depends on the buffer used.
(D) The pH does not change appreciably.
36. The solubility of PbI_{2} is $1.3 \times 10^{-3} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. What is the $\mathrm{K}_{\text {sp }}$ for PbI_{2} ?
(A) 2.2×10^{-9}
(B) 8.8×10^{-9}
(C) 1.7×10^{-6}
(D) 3.4×10^{-6}
37. For the balanced equation:

$$
8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})
$$

$$
\rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

which statement is correct?
(A) $\mathrm{Fe}^{2+}(\mathrm{aq})$ undergoes oxidation
(B) $\mathrm{Fe}^{2+}(\mathrm{aq})$ is the oxidizing agent
(C) $\mathrm{H}^{+}(\mathrm{aq})$ undergoes oxidation
(D) $\mathrm{H}^{+}(\mathrm{aq})$ is the oxidizing agent
38. Which species can act as an oxidizing agent but not as a reducing agent?
(A) Cl_{2}
(B) Cl^{-}
(C) ClO_{2}^{-}
(D) ClO_{4}^{-}
39. What is the oxidation number of Ti in the compound $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$?
(A) -2
(B) +4
(C) +6
(D) +12
40. For a galvanic cell involving the haltstandard conditions,

$$
\begin{aligned}
& \mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au} \\
& \mathrm{Tl}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Tl}
\end{aligned}
$$

what is E° cell?
(A) 0.48 V
(B) 1.16 V
(C) 1.84 V
(D) 2.5
41. According to the half-reaction table,

$$
\begin{array}{ll}
\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn} & \mathrm{E}^{\circ}=-0.14 \mathrm{~V} \\
\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn} & \mathrm{E}^{\circ}=-1.03 \mathrm{~V}
\end{array}
$$

which species is the better oxidizing agent?
(A) Mn^{2+}
(B) Sn^{2+}
(C) Mn
(D) Sn
42. The mass of metal
I. electrolysis current deposited by the
II. electrolysis time electrolysis of an aqueous
III. metal ion charge solution of metal ions increases in direct proportion to which property?
(A) I only
(B) III only
(C) I and II only
(D) I, II and III
43. What is the total number of p electrons in a single phosphorus atom in its ground state?
(A) 3
(B) 5
(C) 9
(D) 15
44. Which element has the largest atomic radius?
(A) Br
(B) K
(C) Mg
(D) Na
45. Which pair of symbols identifies two elements that are metalloids?
(A) B and Ge
(B) Mg and Si
(C) P and As
(D) Ti and V
46. Which pair of symbols represents nuclei that have the same number of neutrons?
(A) ${ }_{26}^{56} \mathrm{Fe}$ and ${ }_{28}^{58} \mathrm{Ni}$
(B) ${ }_{26}^{58} \mathrm{Fe}$ and ${ }_{26}^{56} \mathrm{Fe}^{2+}$
(C) ${ }_{27}^{57} \mathrm{Co}$ and ${ }_{28}^{57} \mathrm{Ni}$
(D) ${ }_{28}^{57} \mathrm{Ni}$ and ${ }_{28}^{58} \mathrm{Ni}$
47. Green light has a wavelength that is slightly shorter than that of
(A) gamma rays.
(B) orange light.
(C) violet light.
(D) X-rays.
48. Which is the electron configuration for an $\mathrm{Fe}(\mathrm{III})$ ion in its ground state?
(A) $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
(C) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$
(D) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
49. In which species does the central atom have one or more lone pairs of valence electrons?
(A) AlCl_{4}^{-}
(B) CO_{2}
(C) PCl_{4}^{+}
(D) SO_{2}
50. Which substance has both covalent and ionic bonds?
(A) $\mathrm{NH}_{4} \mathrm{Br}(\mathrm{s})$
(B) $\mathrm{KI}(\mathrm{s})$
(C) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})$
(D) $\mathrm{SiF}_{4}(\mathrm{~g})$
51. Which has the largest bond dissociation energy?
(A) $\mathrm{H}-\mathrm{F}$
(B) $\mathrm{H}-\mathrm{Cl}$
(C) $\mathrm{H}-\mathrm{Br}$
(D) $\mathrm{H}-\mathrm{I}$
52. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in the nitrite ion, NO_{2}^{-}, is closest to
(A) 180°.
(B) 150°.
(C) 120°.
(D) 109°.
53. Which is a resonance form of the Lewis structure shown here?

I.

(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
54. What is the geometry of the fluorine atoms around the boron atom in BF_{4}^{-}?
(A) planar
(B) see-saw
(C) tetrahedral
(D) triangular pyramidal
55. What is the molecular formula for a saturated compound named 2,2,4-trimethylpentane?
(A) $\mathrm{C}_{7} \mathrm{H}_{14}$
(B) $\mathrm{C}_{8} \mathrm{H}_{14}$
(C) $\mathrm{C}_{8} \mathrm{H}_{16}$
(D) $\mathrm{C}_{8} \mathrm{H}_{18}$
56. How many different compounds have $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$?
(A) one
(B) two
(C) three
57. Which functional group does NOT contain an oxys
(A) alcohol
(B) aldehyde
(C) amide
(D) amine
58. How many pi bonds are present in a molecule of 1-butyne?
(A) one
(B) two
(C) three
(D) four
59. Which is NOT an example of an addition polymer?
(A) polyethylene
(B) polyethylene terephthalate
(C) polystyrene
(D) polyvinyl chloride
60. The conversion of glucose to ethanol is represented:

$$
\mathrm{xC}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{y} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{zCO}_{2}
$$

What are the coefficients x, y, z, respectively, in the balanced equation?
(A) 1, 2, 2
(B) 1, 3, 3
(C) $1,1,4$
(D) $2,4,2$

END OF TEST

Olympiad 2007 Local Section

KEY

Number	Answer	Number	Answer
1.	C	31.	A
2.	C	32.	D
3.	D	33.	D
4.	A	34.	C
5.	D	35.	D
6.	B	36.	B
7.	D	37.	A
8.	B	38.	D
9.	A	39.	B
10.	A	40.	C
11.	B	41.	B
12.	C	42.	C
13.	A	43.	C
14.	A	44.	B
15.	D	45.	A
16.	B	46.	A
17.	C	47.	B
18.	C	48.	A
19.	D	49.	D
20.	C	50.	A
21.	A	51.	A
22.	B	52.	C
23.	C	53.	B
24.	A	54.	C
25.	D	55.	D
26.	C	56.	C
27.	D	57.	D
28.	B	58.	B
29.	D	59.	B
30.	D	60.	A

