COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2012
STATISTICS

TIME ALLOWED:	(PART-I MCQs)	30 MINUTES	MAXIMUM MARKS: 20
THREE HOURS	(PART-II)	2 HOURS \& 30 MINUTES	MAXIMUM MARKS: 80

NOTE: (i) Candidate must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper.
(ii) Attempt ONLY Five questions from PART-II. All questions carry EQUAL marks.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.
(iv) Use of Scientific calculator is allowed.

PART-II

Q.2. A candy company distribute boxes of chocolates with a mixture of creams, toffees and nuts coated in both light and dark chocolate. For a randomly selected box, let X and Y, respectively, be the proportion of the light and dark chocolates that are creams and suppose that the joint density function is:

$$
\begin{equation*}
f(x, y)=2 / 3(2 x+3 y), \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \text { and } 0 \text { e.w. } \tag{05}
\end{equation*}
$$

(a) Verify that join integration with respect to x and y is one.
(b) Let 'A' is defined as the region $\{(\mathrm{x}, \mathrm{y}) \mid 0 \leq \mathrm{x} \leq 1 / 2,0 \leq \mathrm{y} \leq 1 / 4\}$. Find $\mathrm{P}[(\mathrm{X}, \mathrm{Y}) \mathcal{E} \mathrm{A}]$
(c) \quad Fin $g(x)$ and $h(y)$
Q.3. (a) In how many ways can 8 people be lined up get on bus?
(b) If three specific persons insist on following each other?
(c) If two specific person refuse to follow each other?
(d) If 4 persons are male and 4 are females, in how many ways they can line up?
Q.4. Determine if the use of z-test or t-test is appropriate, giving reason, for the following hypothesis. Also find the critical region for the test.
(a) $\mathrm{n}=19, \sigma$ is unknown and the population distribution is normal, left tail test $\alpha=0.05$
(b) $\mathrm{n}=11, \sigma$ is known and the population distribution is normal, right tail test $\alpha=0.01$
(c) $\mathrm{n}=56, \sigma$ is unknown, two tail test $\alpha=0.10$
(d) $\mathrm{n}=12, \sigma$ is unknown and the population distribution is normal, left tail test $\alpha=0.05$
Q.5. (a) Show that the sample mean \bar{X} of random sample of size ' n ' from a distribution having p.d.f. $\mathrm{f}(\mathrm{x} ; \theta)=(1 / \theta) \mathrm{e}^{-(x / \theta)}, 0<\mathrm{x}<\infty, 0<\theta<\infty$, zero elsewhere, is unbiased estimator of θ^{2} / n.
(b) Let $X_{1}, X_{2}, \ldots \ldots, X_{n}$ be a random sample from a Bernoulli distribution. Find the maximum likelihood estimator of probability of success.
Q.6. (a) For the following 2 x 2 table compute Chi-square value for test of independence:

Attribute A	Attribute B	
	+	
+	n_{++}	n_{+-}
-	n_{-+}	n_{--}

STATISTICS

(b) A die is tossed 180 times with the following results:

x	1	2	3	4	5	6
f	28	36	36	30	27	23

Is this a balanced die? Use 0.05 level of significance.
Q.7. (a) Describe and explain the "Principal of Least Square". Also obtain the least square estimates of slope and y-intercept of simple linear regression model.
(b) The following are 15 readings of traffic volume (X cars/ hour) and carbon monoxide concentration (PPM) taken at a metropolitan air quality sampling sight:

X	100	110	125	150	175	190	200	225	250	275	300	325	350	375	400
Y	8.8	9.5	10	10.5	10.5	10.5	10.6	11	12.1	12.1	12.5	13	13.2	14	14.5

Fit a linear Regression model of Y on X . Also plot error vs X .
Q.8. (a) Describe the situation where one way ANOVA can be applied. Also state the relevant (06) hypotheses.
(b) Researchers wish to know if the two populations differ with respect to the mean value of total serum complement activity $\left(C_{H 50}\right)$. Samples of size $n_{1}=10$ and $n_{2}=20$ are taken from diseased and normal subjects. The sample means and standard deviations are:

$$
\bar{x}_{1}=62.6 \quad s_{1}=33.8 \quad \bar{x}_{2}=47.2 \quad s_{2}=10.1
$$

Using appropriate test give your opinion on what the researchers wish.
Q.9. Writer short notes on any FOUR of the following:
(i) Difference between simple and partial correlation.
(ii) Multiple regression
(iii) Use of statistics in electoral politics.
(iv) Test for equality two variance
(v) Joint probability distribution.
(vi) Mathematical expectation.

