

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

STATISTICS

I	FED	ERAL PUB	LIC SERVICE CO	MMISS
		COMPET RECRUI UNDER THE	TITIVE EXAMINATION F TMENT TO POSTS IN BS FEDERAL GOVERNMEN <u>STATISTICS</u>	YOR 5-17 NT, 2012
TIME ALLO	WED:	(PART-I MCQs)	30 MINUTES	MAXIMUM MARKS: 20
THREE HOURS		(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS: 80
NOTE: (i)	Candi	date must write Q.No	o. in the Answer Book in accorda	nce with Q.No. in the Q.Paper.
(ii)	Attem	pt ONLY Five quest	ions from PART-II. All question	s carry EQUAL marks.
(iii)	Extra	attempt of any quest	ion or any part of the attempted q	uestion will not be considered.
(iv)	Use o	f Scientific calculato	r is allowed.	

PART-II

A candy company distribute boxes of chocolates with a mixture of creams, toffees and nuts Q.2. coated in both light and dark chocolate. For a randomly selected box, let X and Y, respectively, be the proportion of the light and dark chocolates that are creams and suppose that the joint density function is: 2/2 (2-- , 2--) f (--- ---) (1 ... 10

Q.3.

Q.4.

	$1 (x,y) = 2/3 (2x + 3y),$ $0 \le x \le 1, 0 \le y \le 1$ and 0 e.w.								
(a)	Verify that join integration with respect to x and y is one.								
(b) (c)	Let 'A' is defined as the region $\{(x,y) \mid 0 \le x \le 1/2, 0 \le y \le 1/4\}$. Find P[(X,Y) \mathcal{E} A] Fin g(x) and h(y)								
(a)	In how many ways can 8 people be lined up get on bus?								
(b)	If three specific persons insist on following each other?								
(c)	If two specific person refuse to follow each other?								
(d)	d) If 4 persons are male and 4 are females, in how many ways they can line up?								
Deter Also	rmine if the use of z-test or t-test is appropriate, giving reason, for the following hypothesis. find the critical region for the test.								

- n=19, σ is unknown and the population distribution is normal, left tail test α =0.05 **(a)**
 - (04)n=11, σ is known and the population distribution is normal, right tail test α =0.01 **(b)**
- (04)(c) n=56, σ is unknown, two tail test α =0.10 (04)
- (**d**) n=12, σ is unknown and the population distribution is normal, left tail test α =0.05 (04)
- Q.5. (10)Show that the sample mean \overline{X} of random sample of size 'n' from a distribution having (a) p.d.f. $f(x; \theta) = (1/\theta) e^{-(x/\theta)}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is unbiased estimator of θ^2/n .
 - (06)Let X_1, X_2, \ldots, X_n be a random sample from a Bernoulli distribution. Find the **(b)** maximum likelihood estimator of probability of success.
- For the following 2x2 table compute Chi-square value for test of independence: (10)Q.6. **(a)**

Attributo A	Attribute B							
Attribute A	+	-						
+	n ₊₊	n _{+ -}						
-	n+	n						

STATISTICS

(b) A die is tossed 180 times with the following results:

X	1	2	3	4	5	6
f	28	36	36	30	27	23

Is this a balanced die? Use 0.05 level of significance.

- StudentBounty.com Q.7. (a) Describe and explain the "Principal of Least Square". Also obtain the least square estimates of slope and y-intercept of simple linear regression model.
 - The following are 15 readings of traffic volume (X cars/ hour) and carbon monoxide (b) concentration (PPM) taken at a metropolitan air quality sampling sight:

X	100	110	125	150	175	190	200	225	250	275	300	325	350	375	400
Y	8.8	9.5	10	10.5	10.5	10.5	10.6	11	12.1	12.1	12.5	13	13.2	14	14.5

Fit a linear Regression model of Y on X. Also plot error vs X.

- Q.8. (a) Describe the situation where one way ANOVA can be applied. Also state the relevant (06) hypotheses.
 - Researchers wish to know if the two populations differ with respect to the mean value of (10)(b) total serum complement activity (C_{H50}). Samples of size $n_1=10$ and $n_2=20$ are taken from diseased and normal subjects. The sample means and standard deviations are:

$$\bar{x}_1 = 62.6$$
 $s_1 = 33.8$ $\bar{x}_2 = 47.2$ $s_2 = 10.1$

Using appropriate test give your opinion on what the researchers wish.

Q.9. Writer short notes on any FOUR of the following:

- Difference between simple and partial correlation. (i)
- Multiple regression (ii)
- (iii) Use of statistics in electoral politics.
- Test for equality two variance (iv)
- (v) Joint probability distribution.
- Mathematical expectation. (vi)

(08)

(08)

(4 X 4=16)