

# FEDERAL PUBLIC SERVICE COMMISS """ POTTITIVE EXAMINATION FOR "" POSTS IN BS-17 """ 2011

# **STATISTICS**

| TIME ALLOWED: |                                                                       | : (PART                                       | (PART-I MCQs)                                          |                                      | 30 MINUTES                                                    |                                 |                                     | MAXIMUM MARKS: 20                         |                                                  |  |  |
|---------------|-----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------------|--|--|
| TH            | REE HOURS                                                             | (PART                                         | -II)                                                   | t) 2 HOURS & 30 MINUTES              |                                                               |                                 | MAXIMUM MARKS: 80                   |                                           |                                                  |  |  |
| NO            | TE: (1) First minut                                                   | attempt <b>P</b> A<br>tes.                    | ART-I (MCQS)                                           | on separ                             | ate Answer Shee                                               | t which                         | shall be                            | taken baci                                | x after 30                                       |  |  |
|               | (ii) Over                                                             | writing/cu                                    | tting of the op                                        | tions/ans                            | wers will not be                                              | given o                         | credit.                             |                                           |                                                  |  |  |
|               | (iii) Statis                                                          | stical Table                                  | es will be prov                                        | ided if re                           | quired.                                                       |                                 |                                     |                                           |                                                  |  |  |
|               | $(\mathbf{IV})$ Use 0                                                 | 1 Scienting                                   |                                                        | anoweu.                              |                                                               |                                 |                                     |                                           |                                                  |  |  |
|               |                                                                       |                                               | (PART-I                                                | MCQs)                                | (COMPULSOR                                                    | <u>Y)</u>                       |                                     |                                           |                                                  |  |  |
| Q.1           | • Select the bes                                                      | st option/ar                                  | nswer and fill ir                                      | the appr                             | opriate box on th                                             | e Answ                          | er Sheet.                           | . (1                                      | x 20=20)                                         |  |  |
| (i)           | The mean of X                                                         | , following                                   | a Binomial dis                                         | tribution                            | with parameter n                                              | and p i                         | s `                                 | variance o                                | f x.                                             |  |  |
|               | (a) Equal to the                                                      | ne (b)                                        | Less than the                                          | (c)                                  | Greater than the                                              | e                               |                                     |                                           |                                                  |  |  |
|               | (d) Equal to the                                                      | ne square ro                                  | oot of the                                             | (e)                                  | None of these                                                 |                                 |                                     |                                           |                                                  |  |  |
| (ii)          | $(A \cap B) \cup (A \cap$                                             | B')=                                          |                                                        |                                      |                                                               |                                 |                                     |                                           |                                                  |  |  |
|               | (a) A                                                                 | (b)                                           | В                                                      | (c)                                  | A'                                                            | (d)                             | B'                                  | (e)                                       | None of these                                    |  |  |
| (iii)         | Four candidates                                                       | s are seekin                                  | g a vacancy on                                         | a college                            | board. If A is tw                                             | vice as I                       | ikelv to                            | be elected                                | as B. and B                                      |  |  |
| ( )           | and C are given<br>that C will be e                                   | about the lected?                             | same chance of                                         | being ele                            | ected, while C is                                             | twice a                         | s likely a                          | s D, what                                 | are the chances                                  |  |  |
|               | (a) 1                                                                 | (b)                                           | 2                                                      | (c)                                  | 1                                                             | (d)                             | 4                                   | (e)                                       | None of these                                    |  |  |
|               | $\overline{2}$                                                        |                                               | 9                                                      |                                      | 3                                                             |                                 | 9                                   |                                           |                                                  |  |  |
| (iv)          | For married cou<br>0.21, the probat<br>and wife will w<br>TV program? | uple in a ce<br>bility that th<br>atch that T | rtain locality th<br>he wife will wa<br>V program is 0 | e probabi<br>tch that T<br>.15. What | lity that the husb<br>V program is 0.2<br>t is the probabilit | and wil<br>28 and t<br>y that a | l watch a<br>he proba<br>t least on | a specific 7<br>bility that<br>le of them | IV program is<br>both husband<br>will watch that |  |  |
|               | (a) 0.49                                                              | (b)                                           | 0.64                                                   | (c)                                  | 0.34                                                          | (d)                             | 0.36                                | (e)                                       | None of these                                    |  |  |
| (v)           | The value of k a joint probabil                                       | that will ma<br>ity distribu                  | ake the function<br>tion is:                           | h, f(x, y)                           | = kxy for $x = 1$ ,                                           | 2, 3 and                        | d y = 1, 2                          | 2, 3                                      |                                                  |  |  |
|               | (a) 1                                                                 | (b)                                           | 1                                                      | (c)                                  | 1                                                             | (d)                             | 1                                   | (e)                                       | None of these                                    |  |  |
|               | $\overline{9}$                                                        |                                               | $\overline{3}$                                         |                                      | $\overline{2}$                                                |                                 | 36                                  |                                           |                                                  |  |  |
| (vi)          | If the joint prob<br>elsewhere, then                                  | bability den $P(x < 1/2)$                     | sity function of $2, y < 1/2$ =                        | X and Y                              | is given by $f(x, y)$                                         | (y) = 2                         | for x>0 a                           | and y>0 ar                                | nd zero                                          |  |  |
|               | (a) 1                                                                 | (b)                                           | 1                                                      | (c)                                  | 3                                                             | (d)                             | 2                                   | (e)                                       | None of these                                    |  |  |
|               | $\overline{2}$                                                        |                                               | 4                                                      |                                      | $\overline{4}$                                                |                                 | $\overline{3}$                      |                                           |                                                  |  |  |
| (vii)         | ) If $V(x)=19$ then                                                   | n V(2x –5)                                    | =                                                      |                                      |                                                               |                                 |                                     |                                           |                                                  |  |  |
|               | (a) 19                                                                | (b)                                           | 38                                                     | (c)                                  | 33                                                            | (d)                             | 76                                  | (e)                                       | None of these                                    |  |  |
| (viii)        | ) Assume that the                                                     | e fitted reg                                  | ression betweer                                        | $\mathbf{x}$ and $\mathbf{v}$        | is. $v = \beta_1 + \beta_2 x a$                               | and the                         | regressio                           | n fitted be                               | tween                                            |  |  |
|               | z and w is $z = 1$                                                    | $\beta_3 + \beta_4 x$ . (                     | Given that $z = 3$                                     | By and w                             | = 2x, then:                                                   |                                 | 0                                   |                                           |                                                  |  |  |
|               | (a) $\beta_{i} = \beta_{2}$                                           | 1                                             |                                                        | (b)                                  | $\beta_{\star} = (3/2)\beta_{\star}$                          |                                 |                                     |                                           |                                                  |  |  |
|               | (c) $\beta_{1} = (2/3)^{2}$                                           | $\beta_{\alpha}$                              |                                                        | (d)                                  | $\beta_{4} = 4\beta_{2}$                                      |                                 |                                     | (e)                                       | None of these                                    |  |  |

Page 1 of 4

www.StudentBounty.com Homework Help & Pastpapers

|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                              |                  |                                                       |            | 5                      |         |                  |
|---------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|------------------|-------------------------------------------------------|------------|------------------------|---------|------------------|
| STA           | <b>ATI</b>        | STICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                              |                  |                                                       |            |                        | %       |                  |
| (ix)          | Wh<br>norr<br>(a) | ile applying analy<br>nality and<br>Consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vsis of<br>must<br>(b)        | variance to test th<br>hold,<br>Unbiasedness | e equa           | ality of means, thre                                  | e con      | ditions namel          | ly,     | Bounty           |
|               | (c)               | Homogeneity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | popu                          | lation variances                             | (d)              | Efficient estimato                                    | ors        |                        | (e)     | None Co.         |
| (x)           | In t              | raditional samplir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng the                        | ory the finite popu                          | lation           | correction factor is                                  | s deno     | oted by                |         | 3                |
|               | (a)               | (N - n)/(N - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                              | (b)              | (N - n)/N                                             |            |                        |         |                  |
|               | (c)               | N/(N - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                              | (d)              | n/(N - 1)                                             |            |                        | (e)     | None of these    |
| (xi)          | A ra              | andom sample of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | size n                        | is drawn from a p                            | opulat           | tion following expo                                   | onenti     | al distribution        | n witl  | n probability    |
|               | den               | sity function, $f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $x) = \frac{1}{\lambda}$      | $e^{-x/\lambda}$ , for x>0.                  | Then             | the maximum likel                                     | ihood      | estimator of           | λisg    | iven by          |
|               | (a)               | $\frac{1}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                           | $1/\overline{x}$                             | (c)              | $\sum_{i=1}^{n} x_i$                                  | (d)        | $\sum_{i=1}^{n} x_i^2$ | (e)     | None of these    |
| (xii)         | An                | estimator $\hat{\theta}$ is said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d to be                       | e consistent if                              |                  |                                                       |            |                        |         |                  |
|               | (a)               | $E(\hat{\theta}) = \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                              | (b)              | $E\left(\hat{	heta} ight) = V\left(\hat{	heta} ight)$ |            |                        |         |                  |
|               | (c)               | $V(\hat{\theta}) \rightarrow 0$ as $n -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\rightarrow \infty$          |                                              | (d)              | $V(\hat{\theta}) = [E(\hat{\theta})]^2$               |            |                        | (e)     | None of these    |
| (xiii)        | If b              | is constant and th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne mo                         | ment generating fu                           | inction          | n of x is $M_x(t)$ then                               | $M_{x+x}$  | $_{b}\left( t ight) =$ |         |                  |
|               | (a)               | $M_x(t)$ (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M                             | (bt) (c)                                     | M <sub>x</sub> ( | (t) + b (d)                                           | $e^{bt}$   | M (t)                  | (e)     | None of these    |
| (xiv)         | If th             | e random variabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e x is                        | distributed normal                           | lly, N(          | (105,36) then $w = ($                                 | (x - 1)    | 05)/6 will foll        | low a   | normal           |
|               | (a)               | N (105, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b)                           | N (0, 1)                                     | (c)              | N (105, 6) (                                          | d) N       | N (105, 36)            | (e)     | None of these    |
| (xv)          | If the bety       | the coefficient of c<br>ween $z = ax+b$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orrela<br>d w=c               | tion between two<br>y+d will be equal        | variab<br>to     | les x and y is giver                                  | n by r,    | then the coe           | fficier | t of correlation |
|               | (a)               | (ac+bd)r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b)                           | (acbd)r                                      | (c)              | r                                                     | (d)        | (ac)r+bd               | (e)     | None of these    |
| (xvi)         | Ass<br>$R_{xy}$   | uming x, y and z $z_z$ is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | are th                        | ree variables, then                          | using            | the usual notations                                   | s, the     | partial correl         | ation ( | coefficient,     |
|               | (a)               | $(r_{xy} - r_{xz}) \Big/ \sqrt{(1 - r_{xz})} \Big/ (1 - r_$ | $(r_{xy}^2)$                  |                                              | (b)              | $(r_{xy}-r_{xz}r_{yz})\Big/\sqrt{1-1}$                | $r_{xy}^2$ |                        |         |                  |
|               | (c)               | $(r_{xy}-r_{xz})/[(\sqrt{1-r_{xy}})/((\sqrt{1-r_{xy}}))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{r_{xy}^2} \bigg( $ | $\overline{1-r_{yz}^2}$                      |                  |                                                       |            |                        |         |                  |
|               | (d)               | $(r_{xy}-r_{xz}r_{yz})/[(\sqrt{1})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1-r_{xz}^2$                  | $\left(\sqrt{1-r_{yz}^2}\right)$             |                  |                                                       | (e)        | None of the            | nese    |                  |
| (xvii)        | A st<br>0.3       | tock may result in and 0.3 then the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı profi<br>verag              | t of \$1, loss of \$1<br>ge profit will be   | or bre           | akeven (no gain no                                    | loss)      | with respect           | ive pro | obabilities 0.4, |
|               | (a)               | \$1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b)                           | \$0.4                                        | (c)              | \$0.25                                                | (d)        | \$0.1                  | (e)     | None of these    |
| (xviii)       | Wh                | ile expanding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mom                           | ent generating fund                          | ction t          | he coefficient of $\mu$                               | ı', is gi  | ven by                 |         |                  |
|               | (a)               | $t^{r}/r!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b)                           | $t^{r}/r$                                    | (c)              | $t^{r}$                                               | (d)        | r!t <sup>r</sup>       | (e)     | None of these    |
| (xix)         | Ass               | ume that x and y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are tw                        | o independent ran                            | dom v            | variables then the V                                  | /(xy) i    | is equal to            |         |                  |
|               | (a)               | ху                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b)                           | zero                                         | (c)              | x/y                                                   | (d)        | x+y                    | (e)     | None of these    |
| ( <b>xx</b> ) | If A              | and B are two in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | deper                         | ident variables the                          | n the c          | conditional probabi                                   | lity F     | P(B A) =               |         |                  |
|               | (a)               | $P(A \cap B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                           | P(A)                                         | (c)              | P(B)                                                  | (d)        | Zero                   | (e)     | None of these    |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                              |                  |                                                       |            |                        |         |                  |

# www.StudentBounty.com Homework Help & Pastpapers

# **STATISTICS**

## PART-II

|                           |                                                         |                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                      |                                                                |                                                                | PAR                                                             | [ <b>-II</b>                                                   |                                                    |                                                         |                                                                       | 10                                            |                                      |
|---------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|
| NOTE:(i)<br>(ii)<br>(iii) |                                                         | PART-II is to be attempted on separate Answer Book.<br>Attempt ANY FIVE questions from PART-II. All questions carry EQUAL marks<br>Extra attempt of any question or any part of the attempted question will not be<br>considered.                                                                           |                                                                   |                                                                      |                                                                |                                                                |                                                                 |                                                                |                                                    |                                                         | ouney.                                                                |                                               |                                      |
| <b>).2</b> .              | (a)                                                     | Diffe<br>for ea                                                                                                                                                                                                                                                                                             | erentiate<br>ach typ                                              | e betwe<br>e of eve                                                  | en inder<br>nt.                                                | pendent,                                                       | depend                                                          | lent an                                                        | d mutu                                             | ally exclu                                              | sive events. C                                                        | Give one of                                   | example<br>( <b>06</b> )             |
|                           | (b)                                                     | A shi<br>sets 1                                                                                                                                                                                                                                                                                             | ipment<br>andom                                                   | of 10 T<br>ly. Find                                                  | V sets i<br>:                                                  | ncludes                                                        | three th                                                        | hat are                                                        | defecti                                            | ve. A stor                                              | e dealer purch                                                        | nases four                                    | r TV<br>( <b>06</b> )                |
|                           |                                                         | (i)                                                                                                                                                                                                                                                                                                         | Proba                                                             | ability o                                                            | f getting                                                      | g exactl                                                       | y two d                                                         | efective                                                       | e TV s                                             | ets;                                                    |                                                                       |                                               |                                      |
|                           |                                                         | ( <b>ii</b> )                                                                                                                                                                                                                                                                                               | Proba                                                             | ability o                                                            | f getting                                                      | g at leas                                                      | t one de                                                        | efective                                                       | e TV se                                            | et.                                                     |                                                                       |                                               |                                      |
|                           | (c)                                                     | In a l<br>phon<br>and c<br>proba                                                                                                                                                                                                                                                                            | arge ci<br>e set is<br>coloure<br>ability                         | ty the p<br>0.86 an<br>d mobil<br>that the                           | robabili<br>d 0.35,<br>e phone<br>family j                     | ties that<br>respecti<br>set is 0<br>possesse                  | a famil<br>vely. Fu<br>.29. A f<br>es either                    | y, selecturther t<br>amily f<br>or bot                         | cted rat<br>he prol<br>from th<br>h types          | ndomly, h<br>bability th<br>his city is s<br>s of mobil | as a black or a<br>at the family<br>selected rando<br>e phones.       | coloured<br>has both<br>omly, wha             | mobile<br>black<br>at is the<br>(04) |
| Q.3.                      | (a)                                                     | <ul> <li>A delicate surgical operation is quite successful and the probability of its failure is 0.005. What is the probability that among next 1000 patients, having this surgical operation, (04 + 04</li> <li>(i) Exactly five will not survive?</li> <li>(ii) At least two will not survive?</li> </ul> |                                                                   |                                                                      |                                                                |                                                                |                                                                 |                                                                |                                                    |                                                         |                                                                       |                                               |                                      |
|                           | <b>(b</b> )                                             | Let x, a random variable showing the number of calls arriving at a telephone exchange during                                                                                                                                                                                                                |                                                                   |                                                                      |                                                                |                                                                |                                                                 |                                                                |                                                    |                                                         |                                                                       | uring a                                       |                                      |
|                           |                                                         | speci                                                                                                                                                                                                                                                                                                       | fic tim                                                           | e period                                                             | , follow                                                       | vs a proł                                                      | oability                                                        | distrib                                                        | ution g                                            | given by f(                                             | $\mathbf{x}) = \frac{e^{-\lambda} \lambda^x}{x!}  \text{for} $        | or $\mathbf{x} = 0$ , $1$                     | 1, 2,                                |
|                           |                                                         | and .                                                                                                                                                                                                                                                                                                       | λ>0. D                                                            | etermin                                                              | e mome                                                         | ent gene                                                       | erating f                                                       | function                                                       | n and f                                            | ind mean                                                | and variance                                                          | of x.<br>( <b>04</b> + (                      | 02 + 02                              |
| 2.4.                      | (a)                                                     | Assu<br>a nor                                                                                                                                                                                                                                                                                               | ming tl<br>mal dis                                                | nat a rar<br>stributio                                               | dom va<br>n with p                                             | riable x<br>probabil                                           | , repres<br>ity dens                                            | enting<br>sity fun                                             | the life<br>ction,                                 | e of a spec                                             | ific type of tu                                                       | ibe light f                                   | follows                              |
|                           |                                                         | f(x)                                                                                                                                                                                                                                                                                                        | $=\frac{1}{\sqrt{2\pi}}$                                          | $=e^{-2\sigma^2}$                                                    | (x-μ)<br>, W                                                   | vhere–•                                                        | o <i><x<∝< i=""></x<∝<></i>                                     | D.                                                             |                                                    |                                                         |                                                                       |                                               |                                      |
|                           |                                                         | (i)                                                                                                                                                                                                                                                                                                         | Show                                                              | that f(x                                                             | x) is a p                                                      | robabili                                                       | ty densi                                                        | ity func                                                       | ction.                                             |                                                         |                                                                       |                                               | (04)                                 |
|                           |                                                         | (ii)                                                                                                                                                                                                                                                                                                        | Deter                                                             | mine m                                                               | aximun                                                         | n likelih                                                      | ood est                                                         | imators                                                        | s of $\mu$                                         | and $\sigma^2$ .                                        |                                                                       |                                               | (06)                                 |
|                           | (b)                                                     | A ma<br>1000<br>from<br>1000                                                                                                                                                                                                                                                                                | nufact<br>hours<br>the pro<br>hours                               | urer clai<br>of opera<br>oduction<br>of opera                        | ims that<br>ation be<br>line an<br>ation. Co                   | at most<br>fore req<br>d tested<br>omment                      | 5 perce<br>uiring s<br>. It was<br>t on the                     | ent of the<br>ervice.<br>found<br>manufa                       | he time<br>Twent<br>that the<br>acturer            | e a given p<br>ty product<br>ree of then<br>'s claim.   | broduct will su<br>s were selecte<br>m required ser                   | ustain fev<br>d random<br>rvice befo          | ver than<br>hly<br>bre<br>(06)       |
| <b>)</b> .5.              | A phan<br>severe<br>provid<br>conduc<br>Follow<br>ExMee | rmaceu<br>headad<br>les, on<br>cted an<br>ving tal<br>d                                                                                                                                                                                                                                                     | tical co<br>che pat<br>average<br>d patie<br>ble show<br>12<br>12 | ompany<br>ients. Tl<br>e, early :<br>nts with<br>ws the r<br>23<br>9 | ABC re<br>ne comp<br>recovery<br>severe<br>ecovery<br>22<br>11 | ecently 1<br>bany AE<br>y than theadach<br>times c<br>12<br>10 | auncheo<br>BC has a<br>ne existine were<br>of 13 suo<br>13<br>9 | d a new<br>annound<br>ing med<br>admini<br>ch patie<br>14<br>8 | v medic<br>ced tha<br>dicine 1<br>istered<br>ents. | cine to pro<br>at their me<br>ExMed. T<br>these meo     | ovide an early<br>dicine named<br>to test their cla<br>dicines on ran | recovery<br>, NewMe<br>aim a stud<br>dom basi | r to<br>ed<br>dy was<br>s.           |
|                           |                                                         | (i)                                                                                                                                                                                                                                                                                                         | 12<br>Do t                                                        | ha data                                                              | nrovida                                                        | sufficie                                                       | nt avid                                                         | once a                                                         | 10<br>t 5% la                                      | aval of sig                                             | nificance to c                                                        | accept the                                    | alaim                                |
|                           |                                                         | (I)                                                                                                                                                                                                                                                                                                         | of A                                                              | BC?                                                                  | provide                                                        | sumer                                                          |                                                                 | CHUE, à                                                        | ι <i>J</i> 70 Ιθ                                   | ver of sig                                              |                                                                       | accept the                                    | ( <b>06</b> )                        |
|                           |                                                         | (ii)                                                                                                                                                                                                                                                                                                        | Cons                                                              | truct a 9                                                            | 0% cor                                                         | nfidence                                                       | interva                                                         | l for $\mu_{l}$                                                | New Med                                            | $-\mu_{ExMed}$ , a                                      | and comment                                                           | on the rea                                    | sult.                                |
|                           |                                                         |                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                      |                                                                |                                                                |                                                                 |                                                                |                                                    |                                                         |                                                                       |                                               | (06                                  |
|                           |                                                         |                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                      |                                                                |                                                                |                                                                 |                                                                |                                                    |                                                         |                                                                       |                                               |                                      |
|                           |                                                         | ( <b>iii</b> )                                                                                                                                                                                                                                                                                              | Cons                                                              | truct a 9                                                            | 9% cor                                                         | nfidence                                                       | interva                                                         | l for $\sigma$                                                 | 2<br>New Med                                       | and comm                                                | ent on the fin                                                        | ding.                                         | × ·                                  |

# **STATISTICS**

- StudentBounty.com Q.6. Considering the simple linear regression model,  $y_i = \beta_1 + \beta_2 x_i + e_i$ , for i = 1, (a) assumptions and derive least square estimators of the  $\beta_1$  and  $\beta_2$ .
  - **(b)** Following table shows the income and saving of seven families residing at a specific local

| Income | e (I)   | 9         | 11      | 13                | 15                              | 17            | 19        | 21   |
|--------|---------|-----------|---------|-------------------|---------------------------------|---------------|-----------|------|
| Saving | ; (S)   | 5         | 6       | 9                 | 11                              | 12            | 14        | 15   |
| (i)    | Fit a r | regressio | on mode | el, $\hat{S}_i =$ | $\hat{\beta}_1 + \hat{\beta}_2$ | $I_i$ for i = | = 1, 2, . | , 7. |

- Test the hypothesis  $H_0$ :  $\beta_2 = 1$  against  $H_0$ :  $\beta_2 < 1$  at 5% level of significance. (ii) (03)
- Q.7. (a) Assume that a random sample of size n is drawn from a population of size N. the population is further assumed to have a mean  $\mu$  and variance  $\sigma^2$ . Prove that,  $V(\bar{y}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N}\right)$ .
  - **(b)** Draw all possible samples of size 3, without replacement, from the population: 12, 9, 15, 9 and 21 and prove that  $E(\overline{y}) = \mu$ (08)
- A study was conducted to establish relationship between the nature of crime and educational **O.8**. (a) facilities available. The study was based on 291 respondents and the number of respondents found involved in various types of crimes were recorded as given below. Data collected during the study is also given below: (08)

|                 | Nature of Crime |        |      |  |  |
|-----------------|-----------------|--------|------|--|--|
| Education Level | Low             | Medium | High |  |  |
| Low             | 17              | 22     | 47   |  |  |
| Medium          | 12              | 15     | 22   |  |  |
| High            | 32              | 21     | 14   |  |  |
| Very High       | 45              | 33     | 11   |  |  |

Could it be concluded, at 1% level of significance, that there exists a significant association between the availability of education facility and nature of crime?

A study was conducted to compare the lifespan of three types of batteries. Fifteen batteries, five **(b)** of each type, were selected randomly from the production line and observed till they expired. Their lifespans, as recorded, are given below: (08)

| Battery Type |    |    |  |  |  |  |  |  |
|--------------|----|----|--|--|--|--|--|--|
| А            | В  | С  |  |  |  |  |  |  |
| 23           | 23 | 54 |  |  |  |  |  |  |
| 34           | 22 | 56 |  |  |  |  |  |  |
| 44           | 21 | 55 |  |  |  |  |  |  |
| 45           | 23 | 67 |  |  |  |  |  |  |
| 44           | 34 | 65 |  |  |  |  |  |  |

Test the hypothesis,  $H_0: \mu_A = \mu_B = \mu_C$  at 5% level of significance.

- Write short notes on the following topics: **Q.9**.
  - Role of statistics in highlighting socio-economic problems of a society. (a)
  - **(b)** Comparison and advantages of Stratified and Systematic sampling schemes.
  - Partial and Multiple regression and correlations. (c)
  - **(d)** Importance of hypothesis testing in real life situations.

\*\*\*\*\*\*\*

(05)

(08)

(04 + 04 + 04 + 04 = 16)