

www.Student	Bounty	v.com
Homework Hel	p & Past	papers

				SE		
STATIS	STICS			1%		
(x)	Suppose we have random sample of size n from normal population with mean $\mu = \sigma^2$, then maximum likelihood estimate of σ^2 when $\hat{\sigma}$, we is:					
			$\mu = x$, is.	24		
	(a) $\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$	(b) $\frac{1}{n} \sum_{i=1}^{n} (x - \mu)^2$	(c) $\frac{1}{n-1} \sum_{i=1}^{n} (x-\bar{x})^2$	(d) $\frac{1}{n} \sum_{i=1}^{n} (x - \mu)$		
(xi)	The probability of accepting a hypothesis when it is false is 0.2 then the probability of reject this hypothesis when it is false is:					
	(a) 0.95	(b) 0.9	(c) 0.85	(d) 0.8		
(xii)	If (x_1, y_1) , (x_n, y_n) set of n observations on Variable X = Hours studied, random variable Y = test score and Y = a + bx is the least square line that approximates the regression of test scores on the number of hours studied is given by Y = 21.819 + 3.471 X. If the desired test score is at least 60 then hours of studied should be at least:					
	(a) none	(b) at most 10	(c) at least 10	(d) at least 11		
(xiii)) The inter arrival time between two messages in a communication/service system follows negative exponential distribution $2 \bar{e}^{2x}$, $x > 0$, then average inter arrival time between two messages is:					
	1	, ,	1	1		
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{-}{4}$		
(xiv)	In random sampling with replacement, the probability that all n specified units of a sampling fram are selected in n draws, with population size is N, is:					
	(a) $\frac{1}{n^{N}}$	(b) $\frac{1}{N^{n}}$	(c) $\frac{1}{n}$	(d) $\frac{1}{\left(\frac{N}{n}\right)}$		
(xv)	For population with hete	rogeneous groups, the	suitable sampling schem	ne is:		
	(a) Simple Random Sam	pling	(b) Systematic Sampli	ng		
	(c) Cluster Sampling (d) Stratified Sampling					
(xvi)	The variance of x, y, z, u, v objects is:					
	(a) 5	(b) $\sqrt{5}$	(c) 1	(d) none of these		
(xvii)	For a size of size n from $N(\mu, \tilde{0}^2), \tilde{0}^2$ is unknown, H ₀ : $\mu = \mu_0$ against H ₁ : $\mu \# \mu_0$ then:					
	(a) t test with $n - 1 d.f.$ at $\alpha = 0.05$ will be used					
	(b) F test with n d.f. at $\propto = 0.05$ will be used					
	(c) t test with $n - 1 df$. at $\infty = 0.025$ will be used					
	(d) X^2 test with $n - 1 d$.f. at $\infty = 0.025$ will be u	used			
(xviii)	Height of date trees, say,	follow $N(8,4)$ then the	e third moment about me	ean is:		
	(a) 3×64	(b) 4×256	(c) 0×4	(d) none of these		
(xix)	In a sample of size n, x a	re girls with variance	V(x) and n-x are boys w	ith variance is::		
	(a) $V(x)$	(b) $V(x) + n^2$	(c) $V(x) - n^2$	(d) none of these		
(xx)	If two random variables are independent then correlation or covariance zero. If correlation or covariance between two variables X and Y is zero then:			nce zero. If correlation or		
	(a) X and Y are independent of one another (b) X and Y may be independent on one another					

(c) X and Y may be mutually exclusive (d) None of these

<u>PART – II</u>

NOTE:	(i) (ii) (iii)	PART-II is to be attempted on the separate Answer Book . Attempt ONLY FOUR questions from PART-II . All questions carry EQUAL marks. Extra attempt of any question or any part of the attempted question will not be considered.
-------	----------------------	---

- **Q.2.** (a) Explain the concept of conditional probabilities using daily life events. Also justify the common formula of conditional probability of an event A given B is $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$. (4)
 - (b) In answering a question on a MCQ test a student either knows the answer or guesses. Let p be the probability that student knows the answer and 1-p the probability that he/she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{n}$, where n is the number of MC alternatives. What is the conditional probability that a student knew the

answer to a question given that she answered it correctly? (8)

Page 2 of 3

www.StudentBounty.com Homework Help & Pastpapers

STATISTICS

- A Laboratory blood test in 95% effective in detecting a certain disease when it a but also yields a "false positive" result for 1% of the healthy persons tested. If 0.5population actually has the disease, what is the probability a person has the disease his test result is positive.
- StudentBounty.com Q.3. If X is the amount of money (in Hundreds of rupees) that a salesman spends on gasoline during a and Y is the corresponding amount of money (in Hundred of rupees) for which he/she is reimbursed the joint density of these two random variables is given by

$$f(x, y) = K \cdot \frac{20 - x}{x}$$
, for $10 < x < 20, \frac{x}{2} < y < x$ and o else where. Find

(a) K (b)
$$f_x(x)$$
 (c) $f_{y|x}(y|x=12)$

- (d) the probability that the salesman will be reimbursed at least 8 units of money when spending 12 units of money. (4×5)
- Q.4. In a certain city three T.V. channels are available. During prime time on Saturday nights Channel 1 has 50% of the viewing audience, Channel 2 has 25% of the viewing audience and Channel 3 has remaining percent of the viewing audience:
 - (a) Compute the probability that among 10 T.V. viewers in that city, randomly chosen on a Saturday night, 50% watching Channel 1, 30% watching Channel 2 and 20% watching Channel 3. (10)
 - (b) Calculate the average number of viewers watching Channel 1, Channel 2, Channel 3 out of 10 randomly selected. (10)
- Q.5. The best yardstick to measure the social and moral maturity of a society is the state of its children. In a recent report titled 'The State of Pakistan Children 2007' the infant mortality rate at 84 per 1000 live births, under-five mortality rate is 125 per 1000 and 38% of children under five being underweight.
 - (a) Construct 95% C.I. for infant mortality rate.
 - (b) Construct 95% C.I. for under-five mortality rate.
 - (c) Construct 95% C.I. for children under-five being under weight.
 - (d) Write a brief report in the light of inferences made in (a), (b) and (c) so that non-technical person can understand. (5)
- **Q.6.** (a) Define Chi-square Goodness-of-fit test with a simple example.
 - (b) Mendalian theory indicates that the shape and colour of certain variety of pea ought to be grouped into 4 groups, "round and yellow," "round and green," "angular and yellow" and "angular and green," according to ratio $\frac{9}{3}/3$. For a sample of size n = 556 peas, the following results were obtained: Round and Yellow 315, Round and green 108, Angular and yellow 101 and Angular

and green 32. Test H₀:
$$p_1 = \frac{9}{16}$$
, $p_2 = \frac{1}{3}p_1$, $p_3 = p_2$ and $p_4 = 1 - p_1 - p_2 - p_3$. (12)

- Q.7. (a) To learn good programming techniques, two courses: C++ and C-Sharp are taught by an I.T Department of a University. The success of each course is evaluated by the scores achieved by the students in the Departments Programmers Test. Nine students using course C++ achieved an average test score of 89.6 with a sample variance of 12.96. Seven students using course C-Sharp got an average score of 81.9 with a sample variance of 161.29. Assuming all test scores are normally distributed, test 1+0: $\mu_x = \mu_y$ against H_o: $\mu_x > \mu_y$ at $\infty = 0.01$. (8)
 - Explain a test statistic which test the hypothesis on difference of two variances on normal (b) (i) populations. (6)
 - Consider part (a) of Q.7. At $\propto = 0.05$, whether it is reasonable to assume that the variance is (ii) the same for two courses mentioned above. (6)

(iv) Bayes Theorem

- Q.8. (a) Explain Systematic Sampling with an example. Compare this method of sampling with simple random sampling. (6)
 - (b) Describe the relationship of systematic sampling with Cluster Sampling
 - (c) Write notes on the following terms:
 - Maximum Likelihood Estimation (ii) Least Squares Estimation of Regression Coefficient.
 - (iii) Census and Registration

(i)

(6)

(8)

(5)

(5)

(5)

(8)

www.StudentBounty.com Homework Help & Pastpapers