# StudentBounts.com FEDERAL PUBLIC SERVICE COMMISSIO



# **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012**

# **PURE MATHEMATICS, PAPER-II**

## **TIME ALLOWED: THREE HOURS**

**MAXIMUM MARKS: 100** 

- NOTE:(i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper. Attempt **FIVE** questions in all by selecting **THREE** questions from **SECTION-A** and **TWO** (ii) questions from SECTION-B. ALL questions carry EQUAL marks.
  - (iii) Extra attempt of any question or any part of the attempted question will not be considered.
  - Use of Scientific Calculator is allowed. (iv)

## **SECTION-A**

**Q.1.** (a) State and prove Taylor's theorem with Cauchy's form of remainder. (8)

(**b**) Evaluate (i) 
$$\lim_{x \to 0} \left(\frac{1}{x}\right)^{\tan x}$$
 (ii)  $\int e^{ax} \sin(bx+c)dx$  (6)

(c) Show that 
$$\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x \, dx = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{q+1}{2}\right)}{2\Gamma\left(\frac{p+q}{2}+1\right)} \tag{6}$$

Sketch the graph of the curve  $r^2 = a \sin 2\theta$ , a > 0. Also write pedal equation for this Q. 2. (a) (8) curve.

(b) Show that the parabola 
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 has asymptotes  $y = \frac{b}{a}x$  and  $y = -\frac{b}{a}x$  (6)

- (c) Define extrema (local and global) of a function of two variables. Find three positive numbers whose sum is 48 and whose product is as large as possible.
- Find the volume of the tetrahedron bounded by the coordinate planes and the plane (8) **O.3.** (a)  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1, \quad \text{a, } b, c > 0.$

(**b**) Evaluate 
$$\int_{0}^{\pi/2} \ell n(\sin x) dx$$
 (**6**)

- Determine the values of x for which the power series  $\sum_{n=2}^{\infty} \frac{x^n}{\ell n n}$  converges absolutely, (c) (6) converges conditionally and diverges.
- Define a metric on a non-empty set X. If d is a metric on X, show that if **Q.4.** (a) (5+3+2) $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$  then d' is also a metric on X. Also write open and closed =10) balls (spheres) in the discrete metric space (X, do) with radius 1 and 1.1 centered at some  $x \in X$ .
  - Define limit point of a subset A of a metric space X. Show that an open sphere **(b)** (10)containing a limit point x of A contains infinitely many points of A other than x.

Page 1 of 2

(6)

#### www.StudentBounty.com ework Help & Pastpa

### PURE MATHEMATICS, PAPER-II

Show that  $R^n$  is a complete metric space under the metric defined by 0.5. (a)

> $d(x, y) = \sqrt{\sum (\xi_i - \eta_i)^2}, \ x, y \in \mathbb{R}^n$ Where  $x = (\xi_1, \xi_2, ..., \xi_n)$  and  $y = (\eta_1, \eta_2, ..., \eta_n)$

- StudentBounts.com Show that a function  $f: (X,d) \rightarrow (Y,d')$  is continuous if and only if for an open subset V **(b)** of Y,  $f^{-1}(V)$  is an open subset of X.
- Find the radius of convergence and interval of convergence of the power series: (c)  $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (x+1)^{2n}}{(n+1)^2 5^n}$

#### **SECTION-B**

**O.** 6. If C is a continuous curve and f(z) is defined on each point of C, then prove that (a)

$$\int_{C} f(z) dz \Big| \le ML$$

Where  $M = max | f \neq |$  and L is length of curve C.

Suppose f(z) = U(x, y) + iV (x,y) is differentiable at a point z = x + iy, then at z the **(b)** (10)first order partial derivatives of U an V exist and satisfy Cauchy-Reiman equations:  $\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}.$ 

Verify Cauchy-Reiman equations for the function  $f(z) = e^{-x} \cos y - i e^{-x} \sin y$ .

- Q.7. (a) Define singularity of a function f(z). Investigate for the pole, singularities and zeros, (6) the function  $f(z) = z^2$ 
  - Let D be simply connected domain and f(z) be analytic in D. Let f'(z) exist and is **(b)** (6) continuous at each point of D then prove that  $\int f(z)dz = 0$ , where C is any closed

Contuor in D.

(c) State De Moivre's theorem and hence prove that

(i) 
$$Cos 5\theta = 16Cos^{3}\theta - 20Cos^{2}\theta + 5Cos\theta$$
  
(ii)  $Sin^{n}\theta = (-1)^{\frac{n-1}{2}} \frac{1}{2^{n-1}} \left[Sin n\theta - Sin(n-2)\theta + \frac{n(n-1)}{2}Sin(n-4)\theta - \dots\right]$ 

- Solve the equation  $x^{12}$ -1=0 and find which of its roots satisfy the equation  $x^4+x^2+1=0$ . **Q. 8. (a)** (6)
  - **(b)** Show that multiplication of a vector z by  $e^{i\alpha}$  where  $\alpha$  is a real number, rotates the (6) vector z counter clockwise through an angle of measure  $\alpha$ .
  - Sum the series (8) (c)  $nSin\theta + \frac{n(n+1)}{2!}Sin2\theta + \frac{n(n+1)(n+2)}{3!}Sin3\theta + \dots$

\*\*\*\*\*\*

www.StudentBounty.com

Page 2 of 2

(10)

(8)