

FEDERAL PUBLIC SERVICE COMMISSION TOTAL PUBLICA PUBLICA PUBLICA P

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS MAXIMU			M MARKS: 100	
NOTE:(i) (ii) (iii) (iv)		Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q Attempt FIVE questions in all by selecting THREE questions from SECTION-A at questions from SECTION-B. ALL questions carry EQUAL marks. Extra attempt of any question or any part of the attempted question will not be consid Use of Scientific Calculator is allowed.	Answer Book in accordance with Q. No. in the Q. Paper. electing THREE questions from SECTION-A and TWO questions carry EQUAL marks. g part of the attempted question will not be considered. wed.	
		SECTION-A		
Q. 1.	(a)	Let <i>H</i> be a normal subgroup and <i>K</i> a subgroup of a group <i>G</i> . Prove that <i>HK</i> is a	(12)	
	(b)	subgroup of G and $H \cap K$ is normal in K and $\frac{1}{H} \cong \frac{1}{H \cap K}$. Show that number of elements in a Conjugacy class Ca of an element 'a' in a group G is equal to the index of its normaliser.	(8)	
Q. 2.	(a) (b)	Prove that if <i>G</i> is an Abelian group, then for all $a, b \in G$ and integers <i>n</i> , $(ab)^n = a^n b^n$. Show that subgroup of Index 2 in a group <i>G</i> is normal.	(6) (7)	
	(C)	If <i>H</i> is a subgroup of a group <i>G</i> , let $N(H) = \{a \in G \mid aHa^{-1} = H\}$ Prove that $N(H)$ is a subgroup of <i>G</i> and contains <i>H</i> .	(7)	
Q. 3.	(a) (b) (c)	Show that set <i>C</i> of complex numbers is a field. Prove that a finite integral domain is a field. Show that $\overline{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a ring under addition mod 6 and multiplication mod	(6) (6) (8)	
		6 but not a field. Find the divisors of Zero in \overline{Z}_6 .		
Q. 4.	(a)	Let F be a field of real numbers, show that the set V of real valued continuous functions on the closed interval [0,1] is a vector space over F and the subset Y of V	(10)	
	(b)	Prove that any finite dimensional vector space is isomorphic to F^n .	(10)	
Q. 5.	(a) (b)	State and prove Cayley-Hamilton theorem. Use Cramer's rule to solve the following system of linear equations: x + y + z + w = 1	(10) (10)	
		x + 2y + 3z + 4w = 0		
		x + y + 4z + 5w = 1		
		x + y + 5z + 6w = 0		
		SECTION-B		
Q. 6.	(a)	Prove that an equation of normal to the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ can be written in the form:	(10)	
		$y \cos\theta - x \sin\theta = a \cos 2\theta$ Hence show that the evolute of the curve is $(-x)^{2/2} + (-x)^{2/2} = 2^{-2/2}$		
	(b)	$(x + y)^{73} + (x - y)^{73} = 2a^{73}$ If and are radii of curvature at the extremities of any chord of the Cardioid 16a ²	(10)	
		$r = a(1 + \cos\theta)$ which passes through the pole, then prove that $= \frac{16a}{16}$.		

Page 1 of 2

9

www.StudentBounty.com Homework Help & Pastpapers

PURE MATHEMATICS, PAPER-I

StudentBounts.com Find an equation of the normal at any point of the curve with parametric equations: Q.7. (a) $x = a(Cost + tSint), \quad y = a(Sint - tCost).$ Hence deduce that an equation of its evolute is $x^2 + y^2 = a^2$. Find equations of the planes bisecting the angle between the planes **(b)** 3x + 2y - 6z + 1 = 0 and 2x + y + 2z - 5 = 0. Define a surface of revolution. Write equation of a right elliptic-cone with vertex at Q. 8. **(a)** (6) origin. Identify and sketch the surface defined by **(b)** (6) $x^2 + y^2 = 2z - z^2.$ If y=f(x) has continuous derivative on [a,b] and S denotes the length of the arc of (8) **(c)** y=f(x) between the lines x=a and x=b, prove that dy *S* = dx

Find the length of the parabolas $y^2 4ax$ From vertex to an extremity of the latus rectum.

(i) (ii) Cut off by the latus rectum.
