FEDERAL PUBLIC SERVICE COMMISS

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION - A

Q.1. (a) Prove that every non-empty set of real numbers that has an upper bound also has an supremum in R .
(b) If $\boldsymbol{x} \in \boldsymbol{R}$, set of real numbers, then there exists $\mathbf{n} \in \mathbf{N}$ such that $\mathbf{x}<\mathbf{n}$.
Q.2. (a) Define continuity of a function at a point and also prove that if \mathbf{f} and \mathbf{g} be functions on \mathbf{A}
to \boldsymbol{R}, where $\mathbf{A} \subseteq R$ then $\mathbf{f}+\mathbf{g}$ and $f g$ are continuous at \mathbf{C}.
(b) If $\mathbf{f}: \mathbf{I} \rightarrow \mathbf{R}$ is differentiable at $\mathbf{C} \in \mathbf{I}$, then f is continuous at \mathbf{C}.
Q.3. (a) Evaluate $\int_{1}^{5} \frac{d x}{\sqrt[3]{x-2}}$.
(b) (i) Define Complete metric space.
(ii) Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence. This
Q.4. (a) Let (\mathbf{x}, \mathbf{d}) be a matric space and \mathbf{A} a subset of \mathbf{X}. Then prove that
(i) Interior \boldsymbol{A}° of A is an open subset of \mathbf{X}.
(ii) $\quad \boldsymbol{A}^{\circ}$ is the largest subset of \mathbf{X} contained in \mathbf{A}.
(b) State and prove Mean value theorem.
Q.5. (a) If $\sum \boldsymbol{a}_{n}$ converges absolutely then $\sum a_{n}$ converges.
(b) Find the area enclosed by the parabola $y^{2}+\mathbf{1 6 x}-\mathbf{7 1}=\mathbf{0}$ and the line $4 \mathrm{x}+\mathrm{y}+\mathbf{7}=\mathbf{0}$

SECTION - B

Q.6. (a) Let $Z=(\cos \theta+\boldsymbol{i} \operatorname{Sin} \theta)$. Then prove that $Z^{\boldsymbol{n}}=\boldsymbol{\operatorname { C o s }} \boldsymbol{n} \theta \boldsymbol{i} \operatorname{Sin} \boldsymbol{n} \theta$ for all n .
(b) Using De Moivre's Theorem evaluate $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^{6}$.
Q.7. (a) Expand $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}, \mathbf{0}<\mathbf{x}<\mathbf{2} \pi$ in a Fourier series if period is 2π.
(b) If $\mathrm{f}(\mathrm{z})$ is analytic inside a circle C with centre at a, then for all Z inside C
$f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\ldots$
Q.8. (a) Evaluate the integral by using Cauchy integral Formula

$$
\begin{equation*}
\int_{c} \frac{(4-3 z) d z}{z(z-1)(z-2)} \quad \text { where } \mathrm{C} \text { is a circle }|z|=3 / 2 \tag{10}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{1-2 p \operatorname{Cos} \theta-p^{2}}=\frac{2 \pi}{1-p^{2}} \tag{10}
\end{equation*}
$$

