COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

PURE MATHEMATICS, PAPER-I

| TIME ALLOWED: THREE HOURS | MAXIMUM MARKS: 100 |
| :--- | :--- | :--- |
| NOTE: (i) | Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO |
| (ii) | questions from SECTION - B. All questions carry equal marks. |
| (iii) | Use of Scientific Calculator is allowed. |
| Extra attempt of any question or any part of the attempted question will not be considered. | |

SECTION - A
Q.1. (a) Prove that both the order and index of a subgroup of a finite group divide the order of the (10)
group.
(b) Define cyclic group. Also prove that every cyclic group is abelian.
(c) Define order of a permutation in S_{n}. Find the order of $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
Q.2. (a) Let ϕ be a homomorphism of a group G onto another group H with Kernel K. Prove that G / K is isomorphic to H .
(b) Show that the vectors $(3,0,-3),(-1,1,2),(4,2,-2)$ and $(2,1,1)$ are linearly dependent over R .
Q.3. (a) Define the dimension of a vector space V over a field F . Also prove that all basis of a finite dimensional vector space contain the same number of elements.
(b) A linear transformation $T: U \rightarrow V$ is one -to-one iff $\mathrm{N}(\mathrm{T})=\{0\}$.
Q.4. (a) Examine the following system for a non-trivial solution:

$$
\begin{array}{ll}
x_{1}-x_{2}+2 x_{3} & +x_{4}=0 \\
3 x_{1}+2 x_{2} & +x_{4}=0 \\
4 x_{1}+x_{2}+2 x_{3} & +2 x_{4}=0 \tag{10}
\end{array}
$$

(b) Show that $\bar{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$ form finite field with addition and multiplication of residue classes modulo P .
Q.5. (a) Let V be a vector space of n - square matrices over a field R. Let U and W be the subspaces of
symmetric and anti symmetric matrices respectively. Then show that $\mathrm{V}=\mathrm{U} O \mathrm{~W}$.
(b) Let A and B be matrices of order 6 such that $\operatorname{det}\left(\mathrm{AB}^{2}\right)=72$ and $\operatorname{det}\left(\mathrm{A}^{2} \mathrm{~B}^{2}\right)=144$. Find $\operatorname{det}(\mathrm{A})$ and $\operatorname{det}\left(\mathrm{AB}^{6}\right)$

$\underline{\text { SECTION - B }}$

Q.6. (a) Sketch the curve $r^{2}=a^{2} \cos 2 \theta, \quad a>0$.
(b) Find the tangent and the normal to the circle $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta$ at the point $\mathrm{P}(\mathrm{a} \cos \alpha, \mathrm{a}$ $\sin \alpha)$.
Q.7. (a) Find the Pedal equation of the parabola $y^{2}=4 a(x+a)$
(b) Find the equations for a straight line passing through the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right), P_{2}\left(x_{2}, y_{2}, z_{2}\right)$.

Find the co-ordinates of the point where this line cuts the yz-plane.
Q.8. (a) Determine the curvature of the cycloid $\mathrm{x}=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$ at the point (x, y).
(b) Find the equation of the plane which passes through the point $(3,4,5)$ has an
x - intercept equal to -5 and is perpendicular to the plane $2 x+3 y-z=8$.

