## StudentBounty.com FEDERAL PUBLIC SERVICE COMMISSI



## **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011**

## **PURE MATHEMATICS, PAPER-I**

|                            |     | LLOWED: THREE HOURS MAXIMUM MARKS: 100                                                                                                                                                |      |
|----------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| NOTE: (i)<br>(ii)<br>(iii) |     | <ul> <li>questions from SECTION – B. All questions carry equal marks.</li> <li>Use of Scientific Calculator is allowed.</li> </ul>                                                    |      |
|                            |     | SECTION - A                                                                                                                                                                           |      |
| Q.1.                       | (a) | Prove that both the order and index of a subgroup of a finite group divide the order of the group.                                                                                    | (1   |
|                            | (b) | Define cyclic group. Also prove that every cyclic group is abelian.                                                                                                                   | (0   |
|                            | (c) | Define order of a permutation in $S_n$ . Find the order of $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$                                                            | (0   |
| Q.2.                       | (a) | Let $\phi$ be a homomorphism of a group G onto another group H with Kernel K. Prove that                                                                                              | (1   |
|                            |     | $G_{K}$ is isomorphic to H.                                                                                                                                                           |      |
|                            | (b) | Show that the vectors (3, 0, -3), (-1, 1, 2), (4, 2, -2) and (2, 1, 1) are linearly dependent over R.                                                                                 | (1   |
| Q.3.                       | (a) | Define the dimension of a vector space V over a field F. Also prove that all basis of a finite dimensional vector space contain the same number of elements.                          | (1   |
|                            | (b) | A linear transformation $T: U \to V$ is one –to-one iff N(T) ={0}.                                                                                                                    | (1   |
| Q.4.                       | (a) | Examine the following system for a non-trivial solution:                                                                                                                              | (1   |
|                            |     | $ \begin{aligned} x_1 - x_2 + 2x_3 &+ x_4 &= 0 \\ 3x_1 + 2x_2 &+ x_4 &= 0 \end{aligned} $                                                                                             |      |
|                            |     | $4x_1 + x_2 + 2x_3 + 2x_4 = 0$                                                                                                                                                        |      |
|                            | (b) | Show that $\overline{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$ form finite field with addition and multiplication of residue classes modulo P.                             | (1   |
| Q.5.                       | (a) | Let V be a vector space of $n$ – square matrices over a field R. Let U and W be the subspaces of symmetric and anti symmetric matrices respectively. Then show that V = U O W.        | (1   |
|                            | (b) | Let A and B be matrices of order 6 such that det $(AB^2) = 72$ and det $(A^2B^2) = 144$ . Find                                                                                        | (1   |
|                            |     | det (A) and det (AB <sup>6</sup> )                                                                                                                                                    |      |
|                            |     | <u>SECTION – B</u>                                                                                                                                                                    |      |
| Q.6.                       | (a) | Sketch the curve $r^2 = a^2 \cos 2\theta$ , $a > 0$ .                                                                                                                                 | (1   |
|                            | (b) | Find the tangent and the normal to the circle $x = a \cos \theta$ , $y = a \sin \theta$ at the point P (a cos $\alpha$ , a sin $\alpha$ ).                                            | (1   |
| Q.7.                       | (a) | Find the Pedal equation of the parabola $y^2 = 4a(x+a)$                                                                                                                               | (1   |
|                            | (b) | Find the equations for a straight line passing through the points $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)$ .<br>Find the co-ordinates of the point where this line cuts the yz-plane. | (1   |
| Q.8.                       | (a) | Determine the curvature of the cycloid $x = a (t - sin t)$ , $y = a(1 - cos t)$ at the point (x,y).                                                                                   | (1   |
|                            | (b) | Find the equation of the plane which passes through the point $(3, 4, 5)$ has an                                                                                                      | (1   |
|                            |     | x – intercept equal to -5 and is perpendicular to the plane $2x + 3y - z = 8$ .                                                                                                       |      |
|                            |     | Page                                                                                                                                                                                  | 1 of |
|                            |     |                                                                                                                                                                                       |      |

## www.StudentBounty.com Homework Help & Pastpapers