PURE MATHEMATICS, PAPER-II

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS

Student Bounty.com **MAXIMUM MARKS:100**

NOTE:

- (i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks.
- (ii) Use of Scientific Calculator is allowed.

SECTION - A

- If f is continuous on [a,b] and if ∞ is of bounded variation on [a,b], then $f \in R(\infty)$ on [a, b] i.e. f **Q.1.** (a) is Riemann – integrable with respect to ∞ on [a,b] (10)
 - Let $\sum a_n$ be an absolutely convergent series having sum S. then every rearrangement of $\sum a_n$ also converges absolutely & has sum S. (10)
- For what +ve value of P, $\int_{0}^{1} \frac{dn}{(1-x)^{p}}$ is convergent? **Q.2.** (a) (10)

(b) Evaluate
$$\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$$
 (10)

Q.3. (a) Find the vertical and horizontal asymptotes of the graph of function:

$$f(x) = (2x+3)\sqrt{x^2 - 2x + 3}$$
 (10)

(b) Let (i) $y = f(x) = \frac{(x+2)(x-1)}{(x-3)^2}$ (ii) $y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$

(ii)
$$y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$$
 (10)

Examine what happens to y when $x \to -\infty$ & $x \to +\infty$

- **Q.4.** (a) Find a power series about 0 that represent $\frac{x}{1-x^3}$ **(6)**
 - (b) Let \sum_{s} be any series, Justify. (5+5+4)
 - (i) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = r < 1$, then $\sum_{n=1}^{\infty} s_n$ is absolutely convergent.
 - (ii) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = r$ and $(r > 1 \text{ or } r = \infty)$, then $\int_{n}^{\infty} diverges$.
 - (iii) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = 1$, then we can draw no conclusion about the convergence or divergence.

PURE MATHEMATICS, PAPER-II

Q.5. (a) Show that
$$\int_{0}^{\Pi 12} Sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}; m, n > 0$$

- (b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m,n,>0$
- "MENTBOUNTY.COM Let A be a sequentially compact subset of a matrix space X. Prove that A is totally **Q.6.** (a) bounded.
 - Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such that $A \cap B = \Phi$ show that d(A,B) > 0(10)

SECTION - B

- Show that if tanZ is expanded into Laurent series about $Z = \frac{11}{2}$, then **Q.7.** (a) (10)
 - Principal is $\frac{-1}{z \Pi/2}$
 - (ii) Series converges for $0 < |Z \frac{\Pi}{2}| < \frac{\Pi}{2}$
 - (b) Evaluate $\frac{1}{2\Pi i} \oint \frac{e^{zi}}{z^2(z^2+2z+2)} dz$ around the circle with equation |z|=3. (10)
- **Q.8.** (a) Expand $f(x) = x^2$; $0 < x < 2\Pi$ in a Fourier series if period is 2Π . (10)
 - (b) Show that $\int_{0}^{\infty} \frac{Cosxdx}{x^2 + 1} = \frac{\Pi}{a} e^{-x}; x \ge 0$ (10)
- Let f(z) be analytic inside and on the simple close curve except at a pole of **Q.9.** (a) order m inside C. Prove that the residue of f(Z) at a is given

by
$$a_{-1} = \lim_{Z \to a} \frac{1}{(m-1)!} \frac{m^{-1}d}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

$$f(z) = f(a) + f'(a)(z-a) + f''(\frac{a}{2!}(z-a)^2 + f'''(\frac{a}{3!}(z-a)^3 + \dots$$
 (10)
