

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010**

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: 3 HOURS

		Ste
× States	FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010	ARKS:100
PURE MATHEMATICS, PAPER-I		
TIME ALLOWED: 3 HOURS MAXIMUM MARKS:100		
NOTE:	 SECTION-A and TWO questions from SECTION-B. All questions carr marks. (ii) Use of Scientific Calculator is allowed. 	
Q.1. (a)	$\frac{\text{SECTION} - A}{Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional and dim (w) \leq \dim (v). Also if dim (w) = dim (V), then V = W. (10)Let V & W be vector space and let T : V \Rightarrow where a linear if V is finite dimensional then$	
(b)	Let V & W be vector space and let $T : V \rightarrow w$ be a linear if V is finite dimensional, then nullity $(T) + \operatorname{rank} (T) = \dim v$ (10)	
Q.2. (a)	Show that there exist a homomorphism from S_n onto the multiplication group $\{-1,1\}$ of 2 elements $(n \ge 1)$. (7)	
(b)	If H is the only subgroup of a given finite order in a group G. Prove that H is normal in G. (7)	
(c)	Show that a field K has only two ideals (namely K & (o)).	(6)
Q.3. (a)	Find all possible jordan canonical forms for 3x3 matrix whose eigenvalues are -2,3,3(10) $\begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$	
(b)	Show that matrix $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	(10)
	is diagonalizable with minimum calculation	
Q.4. (a) (b)	Every group is isomorphic to permutation group Show that for $n \ge 3 Z(s_n) = I$	(7) (6)
	Let A, B be two ideal of a ring, then $\frac{A+B}{A} = \frac{B}{A \cap B}$.	(7)
	Verify Cayley – Hamilton theorem for the matrix	(7)
	$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	
(b)	Prove that ring $A = Z_1$, the set of all integers is a principal ideal ring.	(7)
(c)	Under what condition on the scalar, do the vectors $(1,1,1)$, $(1,\xi,\xi^2)$, $(1,-\xi)$ form basis of c^3 ?	(ξ_{1},ξ_{2}) (6)
	<u>SECTION – B</u>	
Q.6. (a)	Show that T.N. = 0 for the helix $P(x) = (x - x)^{2} + (x - x)^{2} + (x - x)^{2}$	(10)
$R(t) = (a\cos wt) \hat{z} + (a \sin wt) \hat{j} + (bt) \hat{k}$		
(b)	The vector equation of ellipse :r(t) = $(2 \cos t) \hat{i} + (3 \operatorname{Sint}) \hat{j}$; $(0 \le t \le 2\Pi)$ Find the eurvature of ellipse at the end points of major & minor axes.	(10)
Q.7. (a)	Discuss & sketch the surface	(10)
(b)	$x^{2}+4y^{2}=4x-4z^{2}$ Show that an equation to the right circular cone with vertex at 0, axis oz & semi –	
	vertical angle ∞ is $x^2+y^2=z^2 \tan^2 \infty$ (8) Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6)	
Q.8. (a) (b)	Find an equation of the plane which passes through the point $(3,4,5)$ has an x – intercept equal to -5 and is perpendicular to the plane $2x+3y-z=8$. (8)	

www.StudentBounty.com Homework Help & Pastpapers