

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS
MAXIMUM MARKS:100
(i) Attempt FIVE questions in all by selecting at least THREE questions from

NOTE: SECTION-A and TWO question from SECTION-B. All questions carry EQUAL marks.
(ii) Use of Scientific Calculator is allowed.

SECTION - A

Q.1. (a) Let the function $\mathrm{f}=[-2,2] \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$. Show that f is continuous at $\mathrm{x}=0$ but it is not differentiable at $\mathrm{x}=0$. Will there exist a point c in $]-1,1$ [such that

$$
\begin{equation*}
f^{\prime}(c)=0 \text { or } f(1)-f(-1)=2 f^{\prime}(c) ? \tag{10}
\end{equation*}
$$

(b) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$
Q.2. (a) Find the asymptotes of the curve defined by the equation
$(x-y)^{2}\left(x^{2}+y^{2}\right)-10(x-y) x^{2}+12 y^{2}+2 x+y=0$
(b) Test the convergence of the series
$\sum_{n=1}^{\infty} \frac{1}{n^{k}}, k>0$
How do we call this series?
(10)
Q.3. (a) Find the area enclosed by the parabola $y^{2}+16 x+6 y-71=0$ and the line $4 x+y+7=0$
(b) Find the volume of the solid generated by revolving about the y-axis the area of the triangle with vertices at $(2,1),(6,1)$ and $(4,5)$.
Q.4. (a) If $u=$ are $\operatorname{Sin} \frac{\left(x^{2}+y^{2}\right)}{x+y}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
(b) Integrate $F(x, y)=\frac{1}{y^{4}+1}$ over the region $R: 0 \leq x \leq 8, \sqrt[3]{x} \leq y \leq 2$
Q.5. (a) Let X be the set of all (bounded or unbounded) sequences of complex numbers. If d : $\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ is defined as
$d(x, y)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left|\xi_{j}-\eta_{j}\right|}{1+\left|\xi_{j}-\eta_{j}\right|}$
where $x=\left(\xi_{j}\right)$ and $y=\left(\eta_{j}\right)$, then show that d is a metric on X .
(b) Prove that the mapping:
$T:\left(X, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$
is continuous at a point $x_{o} \varepsilon X \Leftrightarrow x_{n} \rightarrow x_{o}$ implies $T x_{n} \rightarrow T x_{o}$.

$\underline{\text { SECTION - B }}$

Q.6. (a) If $Z=\frac{(1+i)+(3+2 i) t}{1+i t}$, then show that the locus of Z is a circle. Also calculate the min and maximum distance of Z from the origin.
(b) Find the complex number Z satisfying the equation $Z^{2}+(2 i-3) Z+(5-i)=0$
Q.7. (a) Show that the function

$$
u(x, y)=4 x y-3 x+2
$$

is harmonic. Construct the corresponding analytic function

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y}) \tag{10}
\end{equation*}
$$

(b) Find the Fourier Series of the function
$f(x)= \begin{cases}x, & 0<x \leq \pi \\ 2 \pi-x, & \pi<x<2 \pi\end{cases}$
period 2π
Q.8. (a) Evaluate the following integral by using Canchy Integral Formula:
$\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$
where C is the circle $|z|=\frac{3}{2}$
(b) Prove that
$\int_{o}^{2 \pi} \frac{d \theta}{1-2 p \operatorname{Cos} \theta-p^{2}}=\frac{2 \pi}{1-p^{2}}$
where $\mathrm{o}<\mathrm{p}<1$.

