

	FEDERAL PUBLIC SERVICE COMMIS COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013 <u>PHYSICS, PAPER-II</u>
All and a second se	UNDER THE FEDERAL GOVERNMENT, 2013
	PHYSICS, PAPER-II
	E ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20
	EE HOURS(PART-II)2 HOURS & 30 MINUTESMAXIMUM MARKS: 80E:(i)First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back
	 (i) Inst attempt Third T (10005) on separate only this wer sheet when shar be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of calculator is allowed.
	PART-I ((MCQs) (COMPULSORY)
	(i) Select the best option/answer and fill in the appropriate Circle \bigcirc on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered.
1.	If whole charge is concentrated at a point then the volume charge density outside the point is:
2.	(a) 1(b) Zero(c) Infinity(d) None of thesePotential due to point charge is:
4.	(a) Symmetric (b) Anti-symmetric (c) Radially symmetric
	(d) Spherically symmetric (e) None of these
3.	Pointing Vector represents: (a) Current (b) Current density (c) Energy flux (d) Magnetic induction (e) None of these
4.	Boundary conditions are used for solution of:
	(a) Homogenous Eq. (b) Inhomogeneous Eq. (c) Both of these (d) None of these
5.	(a) The induced e.m.f. rule(b) The Cockscrew rule(c) Ampere's swimming rule
	(d) Fleming's right-hand rule (e) None of these
6.	How many valence electrons are in every semiconductor material?
-	(a) 1 (b) 2 (c) 3 (d) 4 (e) None of these
7.	Minority carriers are many times activated by:(a) Heat(b) Pressure(c) Dopants(d) None of these
8.	If conductance increases as temperature increases, this is known as a:
	(a) Positive coefficient(b) Negative current flow(c) Negative coefficient
9.	(d) Positive resistance(e) None of theseThree different points are shown on a dc load line. The upper point represents the:
	(a) Minimum current gain (b) Quiescent point (c) Saturation point
4.6	(d) Cutoff point (e) None of these
10.	(a) A forward biased p n-junction (b) A reversed biased p n-junction (c) A forward biased transistor
	(d) A photocell (e) None of these
11.	The signal voltage gain of an amplifier, A _v , is defined as:
10	(a) $A_v = V_{in}/V_{out}$ (b) $A_v = I_c * R_c$ (c) $A_v = R_c/R_E$ (d) $A_v = R_c/R_L$ (e) None of these The total number of electron around the nucleus is called:
12.	The total number of electron around the nucleus is called:

(a) Atomic number (b) Mass number (c) Avogadro's number (d) Gram mole (e) None of these 13. Nuclei of the same element having the same Z but different values of N are called:

(d) Allotropes (a) Isotopes (b) Isobars (c) Isomers (e) None of these

	Una	arge on each α -pai	rticle	is equal to):						2
		The charge on p		-		e cha	arge on proton	(c)	Three tim	es the	e ch. Rolling None of these
	(d)	Four times the c	harge	on protor	n	(e)	None of these				2
15.	Wh	ich of the followi	ng pa	rticles mo	ve with	velo	city of light:				The.
	(a)	α -particle	(b)	β-particle	e	(c)	γ-particle	(d)	None of	these	2
16.	How	w many neutrons	are in	the nucli	de ⁶⁶ Zn	?					
	(a)	66	(b)	36		(c)	30	(d)	26	(e)	None of these
17.	Wh	ich particle is con	sidere	ed as an ic	leal pro	jectil	e for induced nu	iclear r	eactions:		
	(a)	Electron	(b)	Proton		(c)	Neutron	(d)	γ-partic	le (e)	None of these
18.	The	function of the n	nodera	ator in a n	uclear 1	eacto	or is:				
	(a)	To slow down the	ne neu	itrons	(b) T	'o abs	sorb the neutron	S	(c)]	Го сос	ol the reactor
	(d)	To control the e	nergy	released	(e) N	one o	of these				
19.	Wh	ich of the followi	ng pro	ocess is re	sponsit	ole for	r energy emissio	on in Su	un?		
	(a)	Alpha decay	(b)	Beta dec	ay	(c)	Fission	(d)	Fusion	(e)	None of these
20.	The	half life of a radi	ioactiv	ve substar	nce is 10) days	s. This means th	at:			
	(a)	Completely disi	ntegra	tes in 20	days	(b)	Completely dis	sintegra	ates in 40	days	
	(c)	1/8 will be left a	fter 4	0 days	(d) 7	/8 pa	rt disintegrates i	n 30 da	ays	(e)	None of these

NOTE: (i)		-II is to be attempted on the separate Answer Book .	
(ii		didate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Pap	er.
		npt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.	
		a attempt of any question or any part of the attempted question will not be considered.	
(v) Use	of calculator is allowed.	
Q.No.2.	(a) (b)	State and explain Gauss's Law in electrostatics and express it in differential form. Find the electric intensity at a point out side a volume distribution of charge	(10)
		confined in a region of radius R.	(10)
Q.No.3.	(a) (b)	State and explain Faraday's Law of electromagnetic induction. How Maxwell's equations are derived from fundamental relations for	(10)
		electrostatic and magneto static models? Explain these equations.	(10)
Q.No.4.	(a)	Explain P-N junction as rectifier.	(6)
C	(b)	How a transistor is formed. Give construction and symbol of a PNP transistor?	(8)
	(c)	How resistivity of semiconductors change with temperature.	(6)
Q.No.5.	(a)	Explain Compton Effect and Photoelectric Effect. How they support photon theory of light?	(10)
	(b)	Discuss De-Broglie's Hypothesis.	(10)
Q.No.6.	(a)	Discuss Bohr's atomic model and its success. How Rutherford's orbital motion	
Q.110.0.	(a)	violate classical physics?	(10)
	(b)	Describe Schrodinger's wave equation.	(10)
Q.No.7.	(a)	What is Radioactive decay? Define half life and average life and relate half life to	
Q.110.77	(a)	the disintegration constant.	(10)
	(b)	Discuss elementary particles and their properties.	(10)
Q.No.8.		note on any TWO of the following: (10 each)	(20)
Q.110.0.	(a)	Pointing Theorem and Pointing Vector (b) Nuclear Fission and Fusion	(20)
	(a) (c)	Band theory of Solids	
